Atopic dermatitis (AD) is a chronic inflammatory skin disease that is not fully understood. Defects in skin barrier function and dysregulation of the Th2 immune response are thought to be pivotal in AD pathogenesis. In this study, we used keratinocytes and AD-like skin equivalent models using Th2 cytokines IL-4 and IL-13. The keratinocytes and AD-like skin model were used to investigate the effect of dipotassium glycyrrhizinate (KG), which is widely used as an anti-inflammatory agent for AD treatment. KG decreased AD-related gene expression in keratinocytes stimulated with Th2 cytokines. KG alleviated AD-like phenotypes and gene expression patterns and inhibited release of AD-related cytokines in the AD-like skin equivalent models. These findings indicate KG has potential effectiveness in AD treatment and AD-like skin equivalent models may be useful for understanding AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00403-018-1883-z | DOI Listing |
Gels
December 2024
School of Pharmacy, Inner Mongolia Medical University, Hohhot 010100, China.
Patchouli oil (PO) is a natural substance famous for its immune-enhancing and anti-inflammatory effects. Atopic dermatitis (AD) is characterized by epidermal gene mutations, skin barrier dysfunction, and immune dysregulation, making patchouli volatile oil a potential candidate for AD treatment. Initially, PO was mixed with ethyl oleate (EO), castor oil ethoxylated ether-40 (EL-40), anhydrous ethanol, and water to form a patchouli oil microemulsion (PO-ME) system.
View Article and Find Full Text PDFChin Med
December 2024
Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
Background: Atopic dermatitis (AD) is a chronic multifactorial inflammatory skin disorder with a complex etiology. Despite its increasing prevalence, treatment of AD is still limited. Indole-3-carbinol (I3C) is found in cruciferous vegetables and is formed when these vegetables are cut, chewed, or cooked; it exerts diverse pharmacological activities.
View Article and Find Full Text PDFExp Anim
December 2024
Immunology and Allergy Laboratory, Immunology Unit, Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd.
Atopic dermatitis (AD) is a chronic skin disease that causes itching and is characterized by recurrent flares and remissions. The interactions among type 2 inflammation, skin barrier dysfunction, and pruritus play important roles in the pathogenesis of AD. AD symptoms persist for a long period; thus, it is desirable to have disease models that reproduce a prolonged AD-like phenotype.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China.
Azalomycin F (AZF) is a kind of antibiotic with antifungal and antibacterial activities, as well as anti-inflammatory and anti-tumor activities. In this study, we evaluated the effects of AZF on atopic dermatitis (AD) and its possible molecular mechanisms. Mice with 2,4-dinitrofluorobenzene-induced AD-like skin lesions were topically treated with 10-30 mg/kg AZF on their dorsal skin for 12 days.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory and antioxidant properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!