AI Article Synopsis

  • A model is being developed to evaluate how effective various anti-bacterial coatings are on complex metal implants within a bone environment.
  • The study focuses on designing porous titanium implants specifically for implantation in the proximal tibia of rats, with adjustments made to implant length, diameter, and porosity based on tests with cadaver specimens.
  • The research identifies key parameters necessary for inducing chronic implant infections in Sprague Dawley rats, examining different bacterial strains and inoculation doses.

Article Abstract

A model is needed to study the effectiveness of different anti-bacterial coatings on complex metal implants in a bone environment. This article shares data on the design of porous titanium implants for intramedullary implantation in the proximal rat tibia. The implant length, diameter and porosity were optimized after testing on cadaveric specimens. This article shares data on which parameters are critical to establish a chronic implant infection in Sprague Dawley rats when using the new implant design. To this end, different strains of and inoculation doses were investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247446PMC
http://dx.doi.org/10.1016/j.dib.2018.10.157DOI Listing

Publication Analysis

Top Keywords

porous titanium
8
article shares
8
shares data
8
data rat
4
rat infection
4
infection model
4
model assess
4
assess porous
4
implant
4
titanium implant
4

Similar Publications

Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis.

View Article and Find Full Text PDF

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

The soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. The work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals.

View Article and Find Full Text PDF

Introduction: As the number of revision total knee arthroplasties (rTKA) continues to rise, there is increasing interest in the use of contemporary rotating hinge prostheses. These devices often incorporate porous cones to fill bone defects and enhance long-term fixation. This study evaluated the clinical and functional outcomes and survivorship in rTKA patients utilizing a rotating hinge prosthesis with flexible titanium (FT) cones, porous tantalum (PT) cones, or no cones.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!