Genetic diversity at immune genes and levels of parasitism are known to affect patterns of (dis)assortative mating in several species. Heterozygote advantage and/or good genes should shape mate choice originating from pathogen/parasite-driven selection at immune genes. However, the stability of these associations, and whether they vary with environmental conditions, are still rarely documented. In this study, we describe mating patterns in a wild population of tree swallows () over 4 years and assess the effects of haemosporidian parasite infection and immune genetic diversity at β-defensin genes on those patterns within two habitats of contrasting environmental quality, in southern Québec, Canada. We first show that mating patterns were only very weakly related to individual status of infection by haemosporidian parasites. However, we found a difference between habitats in mating patterns related to infection status, which was likely due to a non-random distribution of individuals, as non-infected mating pairs were more frequent in lower quality habitats. Mating patterns also differed depending on β-defensin heterozygosity at AvBD2, but only for genetic partners outside of the social couple, with heterozygous individuals pairing together. Our study underlines the importance of considering habitat heterogeneity in studies of sexual selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254242PMC
http://dx.doi.org/10.7717/peerj.6004DOI Listing

Publication Analysis

Top Keywords

mating patterns
20
genetic diversity
12
parasite infection
8
immune genetic
8
immune genes
8
habitats mating
8
mating
7
patterns
7
effects blood
4
blood parasite
4

Similar Publications

Intra-specific interactions among top carnivores are among the most intriguing behavioural aspects and essential components of population dynamics. Static interactions pertain to space use, while dynamic interactions involve spatio-temporal patterns influenced by social structure, distribution, mate selection, and density. Previous studies have focused on static interactions, successfully estimating spatial overlap but leading to a knowledge gap of dynamic interaction to be able to compute attraction and avoidance on similar spatio-temporal scales.

View Article and Find Full Text PDF

Indirect evidence of an early mating advantage in wild cooperatively breeding male banded mongooses.

Sci Rep

January 2025

Centre for Ecology and Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK.

Promiscuous females reduce male reproductive control. Males can attempt to monopolise access to these females, but distractions and sneaky rivals mean extra copulations cannot always be blocked. By mating first, males can obtain a headstart in sperm competition, but this may be negated by sperm storage and cryptic female choice mechanisms.

View Article and Find Full Text PDF

Distinct brain circuits control sex preferences in mice.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Male medaka continue to mate with females despite sperm depletion.

R Soc Open Sci

January 2025

Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.

In animals where males engage in multiple matings, sperm depletion can substantially reduce the reproductive success of both sexes. However, little is known about how successive matings affect sperm depletion, fertilization rates and mating behaviour. Here, we investigated this phenomenon under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!