Generally, plant roots shape the rhizosphere fungal community but how individual plant genes involved in senescence affect this shaping is less studied. We used an early senescence leaf (esl) mutant rice and compared it with its isogenic wild type variety to evaluate the effect of the vacuolar H-ATPase (VHA-A1) gene mutation on the rhizosphere fungal community structure and composition using a metagenomic pyrosequencing approach. The most predominate fungal phyla identified for both isogenic lines belonged to Ascomycota, Basidiomycota and Glomeromycota, where Ascomycota were more prevalent in the esl mutant than the wild type variety. Real-time quantitative PCR analysis confirmed a significant rise in the richness of Cladosporium cladosporioides in esl mutant rice than the wild type variety. Correlation analysis revealed four most abundant genera identified for the esl mutant and their close association with yield and biomass decline, lipid peroxidation, lower root vitality, chlorophyll degradation and limited VHA activity. Higher K efflux, H and a lower Ca influx was also observed in the esl mutant which could be the reason for abnormal functioning of mutant plants. These results illustrate that besides the well-known effect of senescence on plant physiology and yield decline, it can further shape the rhizosphere fungal community.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269515 | PMC |
http://dx.doi.org/10.1038/s41598-018-35578-y | DOI Listing |
Front Plant Sci
August 2021
Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Poitiers, France.
Drought is one of the main abiotic stresses, which affects plant growth, development, and crop yield. Plant response to drought implies carbon allocation to sink organs and sugar partitioning between different cell compartments, and thereby requires the involvement of sugar transporters (SUTs). Among them, the early response to dehydration six-like (ESL), with 19 members in , form the largest subfamily of monosaccharide transporters (MSTs) still poorly characterized.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2020
Department of Chemistry, St. Edward's University, Austin, TX, 78704, USA.
Studies have found that mutant, misfolded superoxide dismutase [Cu-Zn] (SOD1) can convert wild type SOD1 (wtSOD1) in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. In developing a prion-like mechanism for this propagation of SOD1 misfolding we have previously shown how enervation of the SOD1 electrostatic loop (ESL), caused by the formation of transient non-obligate SOD1 oligomers, can lead to an experimentally observed gain of interaction (GOI) that results in the formation of SOD1 amyloid-like filaments. It has also been shown that freedom of ESL motion is essential to catalytic function.
View Article and Find Full Text PDFSci Rep
November 2018
College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
Generally, plant roots shape the rhizosphere fungal community but how individual plant genes involved in senescence affect this shaping is less studied. We used an early senescence leaf (esl) mutant rice and compared it with its isogenic wild type variety to evaluate the effect of the vacuolar H-ATPase (VHA-A1) gene mutation on the rhizosphere fungal community structure and composition using a metagenomic pyrosequencing approach. The most predominate fungal phyla identified for both isogenic lines belonged to Ascomycota, Basidiomycota and Glomeromycota, where Ascomycota were more prevalent in the esl mutant than the wild type variety.
View Article and Find Full Text PDFInt J Mol Sci
September 2018
College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
To evaluate the effect of changes in chlorophyll (Chl) composition and fluorescence on final yield formation, early senescence leaf () mutant rice and its wild-type cultivar were employed to investigate the genotype-dependent differences in Chl composition, Chl fluorescence, and yield characteristics during the grain-filling stage. However, the temporal expression patterns of key genes involved in the photosystem II (PSII) reaction center in the leaves of two rice genotypes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the seed-setting rate, 1000-grain weight, and yield per plant remarkably decreased, and the increase in the 1000-grain weight during the grain-filling stage was retarded in mutant rice.
View Article and Find Full Text PDFPLoS One
January 2018
Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang, China.
In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!