The hypersaline Kebrit Deep brine pool in the Red Sea is characterized by high levels of toxic heavy metals. Here, we describe two structurally related mercuric reductases (MerAs) from this site which were expressed in Sequence similarities suggest that both genes are derived from proteobacteria, most likely the or We show that one of the enzymes (K35NH) is strongly inhibited by NaCl, while the other (K09H) is activated in a NaCl-dependent manner. We infer from this difference that the two forms might support the detoxification of mercury in bacterial microorganisms that employ the compatible solutes and salt-in strategies, respectively. Three-dimensional structure modeling shows that all amino acid substitutions unique to each type are located outside the domain responsible for formation of the active MerA homodimer, and the vast majority of these are found on the surface of the molecule. Moreover, K09H exhibits the predominance of acidic over hydrophobic side chains that is typical of halophilic salt-dependent proteins. These findings enhance our understanding of how selection pressures imposed by two environmental stressors have endowed MerA enzymes with catalytic properties that can potentially function in microorganisms that utilize distinct mechanisms for osmotic balance in hypersaline environments. Analysis of two structurally homologous but catalytically distinct mercuric reductases from the Kebrit Deep brine in the Red Sea sheds light on the adaptations that enable microorganisms to cope simultaneously with extreme salinity and toxic mercury compounds. One is strongly inhibited by high NaCl concentrations, while the other exhibits NaCl-dependent activation. Their different activity profiles imply that they may derive from bacterial microorganisms that utilize compatible solutes and salt-in strategies, respectively, to maintain osmotic balance. Three-dimensional modeling reveals that regions not involved in formation of the active homodimer are conserved between the two. However, in the NaCl-dependent form, distinct amino acid substitutions are found in areas that are critical for stability in high salt. The work provides insights into how two environmental stressors have shaped the structure of orthologous enzymes through selection and adaptation, enabling them to retain their catalytic function in what may be very different cellular contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365835 | PMC |
http://dx.doi.org/10.1128/AEM.01431-18 | DOI Listing |
Mar Drugs
May 2019
Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools.
View Article and Find Full Text PDFFront Microbiol
April 2019
Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2019
Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
Genome Announc
March 2016
King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
October 2015
Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Electronic address:
The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!