AI Article Synopsis

  • * Current rabies immunoglobulin treatments come from horse or human plasma, facing issues of supply, cost, and quality.
  • * The emergence of recombinant DNA-produced monoclonal antibodies offers a promising alternative, with the first approved in India and more in trials, leading to WHO's inclusion in updated rabies vaccination policies.

Article Abstract

Despite successful control in many parts of the world, rabies virus continues to result in tens of thousands of deaths each year. Death from rabies can be prevented by timely and appropriate post exposure prophylaxis including wound cleaning and administration of vaccine and rabies immunoglobulin. Currently, rabies immunoglobulin is derived from the blood plasma of horses or humans and has several limitations relating to supply, cost and quality. Monoclonal antibodies produced through recombinant DNA technologies could potentially overcome these limitations. The first anti-rabies monoclonal antibody has recently gained regulatory approval in India and there are several other candidates being evaluated in clinical trials. Given the advances in the field, rabies monoclonal antibodies have been recently considered by the World Health Organization's Strategic Advisory Group of Experts on Immunization and included in updated WHO immunization policy recommendations for rabies published in April 2018. This article reviews the current landscape of the clinical trial development of anti-rabies monoclonal antibodies and the historical clinical trial pathways followed for blood-derived rabies immunoglobulin before discussing challenges in the clinical evaluation, regulatory approval, uptake and monitoring of these products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2018.11.004DOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
16
rabies immunoglobulin
12
rabies
8
post exposure
8
exposure prophylaxis
8
anti-rabies monoclonal
8
regulatory approval
8
clinical trial
8
monoclonal
5
clinical
5

Similar Publications

Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages.

Nat Commun

December 2024

Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.

The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!