Mood disorders cause significant morbidity and mortality, and existing therapies fail 20%-30% of patients. Deep brain stimulation (DBS) is an emerging treatment for refractory mood disorders, but its success depends critically on target selection. DBS focused on known targets within mood-related frontostriatal and limbic circuits has been variably efficacious. Here, we examine the effects of stimulation in orbitofrontal cortex (OFC), a key hub for mood-related circuitry that has not been well characterized as a stimulation target. We studied 25 subjects with epilepsy who were implanted with intracranial electrodes for seizure localization. Baseline depression traits ranged from mild to severe. We serially assayed mood state over several days using a validated questionnaire. Continuous electrocorticography enabled investigation of neurophysiological correlates of mood-state changes. We used implanted electrodes to stimulate OFC and other brain regions while collecting verbal mood reports and questionnaire scores. We found that unilateral stimulation of the lateral OFC produced acute, dose-dependent mood-state improvement in subjects with moderate-to-severe baseline depression. Stimulation suppressed low-frequency power in OFC, mirroring neurophysiological features that were associated with positive mood states during natural mood fluctuation. Stimulation potentiated single-pulse-evoked responses in OFC and modulated activity within distributed structures implicated in mood regulation. Behavioral responses to stimulation did not include hypomania and indicated an acute restoration to non-depressed mood state. Together, these findings indicate that lateral OFC stimulation broadly modulates mood-related circuitry to improve mood state in depressed patients, revealing lateral OFC as a promising new target for therapeutic brain stimulation in mood disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2018.10.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!