Novel flexible heteroarotinoid, SL-1-39, inhibits HER2-positive breast cancer cell proliferation by promoting lysosomal degradation of HER2.

Cancer Lett

Department of Natural Sciences and Mathematics, Dominican University of California, 50 Acacia Avenue, San Rafael, CA, 94901, USA; College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94594, USA. Electronic address:

Published: February 2019

SL-1-39 [1-(4-chloro-3-methylphenyl)-3-(4-nitrophenyl)thiourea] is a new flexible heteroarotinoid (Flex-Het) analog derived from the parental compound, SHetA2, previously shown to inhibit cell growth across multiple cancer types. The current study aims to determine growth inhibitory effects of SL-1-39 across the different subtypes of breast cancer cells and delineate its molecular mechanism. Our results demonstrate that while SL-1-39 blocks cell proliferation of all breast cancer subtypes tested, it has the highest efficacy against HER2+ breast cancer cells. Molecular analyses suggest that SL-1-39 prevents S phase progression of HER2+ breast cancer cells (SKBR3 and MDA-MB-453), which is consistent with reduced expression of key cell-cycle regulators at both the protein and transcriptional levels. SL-1-39 treatment also decreases the protein levels of HER2 and pHER2 as well as its downstream effectors, pMAPK and pAKT. Reduction of HER2 and pHER2 at the protein level is attributed to increased lysosomal degradation of total HER2 levels. This is the first study to show that a flexible heteroarotinoid analog modulates the HER2 signaling pathway through lysosomal degradation, and thus further warrants the development of SL-1-39 as a therapeutic option for HER2+ breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.11.022DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
flexible heteroarotinoid
12
lysosomal degradation
12
cancer cells
12
her2+ breast
12
cell proliferation
8
her2 pher2
8
sl-1-39
7
cancer
7
breast
6

Similar Publications

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

Breast Cancer Res Treat

January 2025

Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.

Purpose: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative.

View Article and Find Full Text PDF

Purpose: Interstitial lung disease (ILD) is a well described and potentially fatal complication of trastuzumab-deruxtecan (T-DXd). It is currently unknown if specific monitoring is beneficial in the early detection of ILD in these patients. We describe the efficacy and feasibility of a novel ILD monitoring protocol in breast cancer patients treated with T-DXd at our institution.

View Article and Find Full Text PDF

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!