The hard tick-borne relapsing fever spirochete, Borrelia miyamotoi, has recently gained attention as a cause of human illness, but fundamental aspects of its enzootic maintenance are still poorly understood. Challenges to experimental studies with B. miyamotoi-infected vector ticks include low prevalence of infection in field-collected ticks and seemingly inefficient horizontal transmission from infected immunocompetent rodents to feeding ticks. To reliably produce large numbers of B. miyamotoi-infected ticks in support of experimental studies, we developed an animal model where immunocompromised Mus musculus SCID mice were used as a source of B. miyamotoi-infection for larval and nymphal Ixodes scapularis ticks. Following needle inoculation with 1 × 10 spirochetes, the SCID mice developed a high spirochetemia (greater than 1 × 10 copies of B. miyamotoi purB per mL of blood) that persisted for at least 30 d after inoculation. In comparison, immunocompetent M. musculus CD-1 mice developed transient infections, detectable for only 2-8 d within the first 16 d after needle inoculation, with a brief, lower peak spirochetemia (8.5 × 10 - 5.6 × 10purB copies per mL of blood). All larval or nymphal ticks fed on infected SCID mice acquired B. miyamotoi, but frequent loss of infection during the molt led to the proportion infected ticks of the resulting nymphal or adult stages declining to 22-29%. The ticks that remained infected after the molt had well-disseminated infections which then persisted through successive life stages, including transmission to larval offspring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392017 | PMC |
http://dx.doi.org/10.1016/j.ttbdis.2018.11.017 | DOI Listing |
Nat Microbiol
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Improved vaccination strategies for tuberculosis are needed. Intravenous (i.v.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.
Introduction: Challenges remain in reducing antigen escape and tumor recurrence while CAR-T cell therapy has substantially improved outcomes in the treatment of multiple myeloma. T cell receptor fusion construct (TRuC)-T cells, which utilize intact T cell receptor (TCR)-CD3 complex to eliminate tumor cells in a non-major histocompatibility complex (MHC)-restricted manner, represent a promising strategy. Moreover, interleukin-7 (IL-7) is known to enhance the proliferation and survival of T cells.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare, naturally occurring, homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here, we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human, mobilized hematopoietic stem progenitor cells (HSPC), resulting in a transplant that undergoes normal hematopoiesis, produces CCR5 null T cells, and renders xenograft mice refractory to HIV infection.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!