Conserved families of molecular chaperones assist protein folding in the cell. Here we review the conceptual advances on three major folding routes: (i) spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive Hsp70 cycles; and (iii) folding by the Hsp70-Hsp90 cascades. These chaperones prepare their protein clients for folding on their own, without altering their folding path. A particularly interesting role is reserved for Hsp90. The function of Hsp90 in folding is its ancient function downstream of Hsp70, free of cochaperone regulation and present in all kingdoms of life. Eukaryotic signalling networks, however, embrace Hsp90 by a plethora of cochaperones, transforming the profolding machinery to a folding-on-demand factor. We discuss implications for biology and molecular medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2018.10.004 | DOI Listing |
J Phys Chem B
January 2025
School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFNat Commun
January 2025
Biophysics Program, Stanford University, Stanford, CA, USA.
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!