The study reports first ever account of measurements of linear viscoelastic moduli under small amplitude oscillatory shear deformations, for commercially available juvenile and aged in vitro 3D reconstructed skin models. The results were compared with those of native male whole human and dermis-only foreskin samples, catering to a wide age group from 0.5 to 68 years, including samples from a 23-year-old male abdomen. In the strain sweep tests, the dermis of the juvenile/young age group assumed a higher intrinsic elastic modulus than the whole skin. A reverse qualitative trend was noted for the adult/aged age group. Confirmed by the histological examination of the stained cross-sections, this is attributed to the nascent epidermal differentiation and the high fiber density of dermal collagen. The oscillation frequency sweeps exposed a greater dependence of the elasticity on the frequency for the native male dermis foreskin samples as compared to the whole skins, irrespective of age. This is anticipated since the extremely structured epidermis confers higher resistance to the whole skins towards intracycle deformations compared to the dermis, thereby storing smaller elastic energy. The 3D skin models examined in this work exhibited a broader linear viscoelastic region, a larger viscoelasticity, and much higher dynamic moduli, compared to the native skin. The rheological trends are a significant addition to the literature and may be used as a reference for the design of next generation of scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2018.11.013 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China. Electronic address:
Soy glycinin amyloid fibrils (11Fs) with different lengths were prepare, and their influence on 3D printing performance of high internal phase emulsions (HIPEs) were investigated. The longest fibril with an average length of 1594.40 ± 135.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA.
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.
Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
Recovering the relaxation spectrum, a fundamental rheological characteristic of polymers, from experiment data requires special identification methods since it is a difficult ill-posed inverse problem. Recently, a new approach relating the identification index directly with a completely unknown real relaxation spectrum has been proposed. The integral square error of the relaxation spectrum model was applied.
View Article and Find Full Text PDFSci Rep
January 2025
Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.
Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!