Recent study indicated that glutamine prevents alcoholic tissue injury in mouse gut and liver. Here we investigated the potential role of Epidermal Growth Factor Receptor (EGFR) in glutamine-mediated prevention of ethanol-induced colonic barrier dysfunction, endotoxemia and liver damage. Wild-type and EGFR*Tg transgenic (expressing dominant negative EGFR) mice were fed 1-6% ethanol in Lieber-DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin, and junctional integrity assessed by confocal microscopy. Liver injury was evaluated by plasma transaminases, histopathology and triglyceride analyses. Glutamine effect on acetaldehyde-induced tight junction disruption was investigated in Caco-2 cell monolayers. Doxycycline-induced expression of EGFR* blocked glutamine-mediated prevention of ethanol-induced disruption of colonic epithelial tight junction, mucosal permeability and endotoxemia. Ethanol activated cofilin and disrupted actin cytoskeleton, which was blocked by glutamine in an EGFR-dependent mechanism. Ethanol down-regulated antioxidant gene expression and up-regulated cytokine and chemokine gene expression, which were blocked by glutamine in wild-type mice in the presence or absence of doxycycline, but not in EGFR*Tg mice in the presence of doxycycline. Histopathology, plasma transaminases, triglyceride and expression of chemokine and antioxidant genes indicated ethanol-induced liver damage, which were blocked by glutamine in an EGFR-dependent mechanism. Src kinase activity and extracellular ligand binding domain of EGFR are required for glutamine-mediated protection of barrier function in Caco-2 cell monolayers. Glutamine released metalloproteinases into the medium, and metalloproteinase inhibitors blocked glutamine-mediated protection of barrier function. Results demonstrate that EGFR plays an important role in glutamine-mediated prevention of alcoholic gut permeability, endotoxemia and liver damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363835 | PMC |
http://dx.doi.org/10.1016/j.jnutbio.2018.10.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!