Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.

Bioresour Technol

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.

Published: February 2019

The aim of this work was to study ethanol fermentation properties of the robust mutant Candida glycerinogenes UG21 from non-detoxified lignocellulose hydrolysate. C. glycerinogenes UG21 with high tolerance to elevated temperature, acetic acid, and furfural was obtained and applied in lignocellulose-based ethanol production. C. glycerinogenes UG21 exhibited highly-efficient degradation ability to furfural. High levels of acetic acid and furfural inhibited cell growths and ethanol production of Saccharomyces cerevisiae ZWA46 and industrial Angel yeast but had a slight impact on biomass and ethanol titer of C. glycerinogenes UG21. Using non-detoxified sugarcane bagasse hydrolysate, C. glycerinogenes UG21 reached 1.24 g/L/h of ethanol productivity at 40 °C but ethanol production of S. cerevisiae ZWA46 and Angel yeast was inhibited. Further, C. glycerinogenes UG-21 exhibited 2.42-fold and 1.58-fold higher productivity than S. cerevisiae ZWA46 and Angel yeast under low-toxicity hydrolysate. Therefore, C. glycerinogenes UG-21 could be an excellent candidate for low-cost lignocelluloses ethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.11.053DOI Listing

Publication Analysis

Top Keywords

glycerinogenes ug21
20
ethanol production
16
hydrolysate glycerinogenes
12
cerevisiae zwa46
12
angel yeast
12
ethanol
8
ethanol fermentation
8
non-detoxified lignocellulose
8
lignocellulose hydrolysate
8
glycerinogenes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!