Remote ischemic conditioning in a rat model of testicular torsion: does it offer testicular protection?

J Pediatr Urol

Division of Urology, Beirut, Lebanon. Electronic address:

Published: February 2019

Background: Testicular torsion is a surgical emergency mainly affecting adolescent boys, with a relatively high rate of missed torsion and testicular loss secondary to delay in prompt diagnosis and surgical intervention. With ischemic reperfusion injury as its underlying culprit, testicular torsion may respond favorably to remote ischemic conditioning (RIC) where a non-privileged site (e.g. limb) is concurrently rendered ischemic to divert the cascade of reperfusion injury from the privileged organ (e.g. testicle), thus offering a protective effect in improving salvage. This mechanism is established for other organs, whereas it has not been evaluated for testis.

Aim: It was aimed to evaluate RIC in a rat model of testicular torsion as a proof of principle that, similar to what has been demonstrated in other organs, RIC does offer testicular protection.

Study Design: This is an animal experimental study. Thirty Sprague-Dawley male rats were divided into control group (n = 15) and experimental group (n = 15). Non-survival surgeries of right-sided spermatic cord torsion (720° counter-clockwise twist) were performed for both the groups (45 min) followed by detorsion and reperfusion (5 min) and then orchiectomy. For the experiment group, an intervention of tail clamping to create RIC was applied 5 min after torsion, then unclamping 5 min before detorsion, followed by detorsion and reperfusion for 5 min and then orchiectomy. The testicles were histologically and immunologically examined using a hypoxia inducible factor (HIF-1α) ELISA Kit. The histological findings on ischemic changes, vascular congestion, and immunohistochemistry were quantified using previously described, validated grading systems.

Results: DISCUSSION: This is the first study to demonstrate the concept of RIC in an animal model of testicular torsion. It is limited by the non-availability of similar studies to compare outcomes and by the caution of extrapolating animal studies on humans. It does lay grounds, however, to subsequent studies to further elaborate on this concept and its clinical applicability.

Conclusion: When RIC is applied in the experimental setting of testicular torsion, there is less evidence of hypoxic injury by histology and immunohistochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpurol.2018.09.012DOI Listing

Publication Analysis

Top Keywords

testicular torsion
24
model testicular
12
testicular
9
torsion
9
remote ischemic
8
ischemic conditioning
8
rat model
8
offer testicular
8
reperfusion injury
8
group n = 15
8

Similar Publications

Testicular Torsion in a 14-Year-Old with Sertoli Cell Granular Cell Change and Sertoli Nodules.

Fetal Pediatr Pathol

January 2025

Department of Pathology, Louisiana State University Health Science Center and Children's Hospital of New Orleans, New Orleans Children's Hospital, New Orleans, LA, USA.

Sertoli eosinophilic granular change and Sertoli cell nodules are incidental findings. This details focal Sertoli eosinophilic granular and Sertoli cell only changes coincident with Sertoli cell nodules in a pubertal testis with acute torsion and bell clapper deformity. A 14-year-old with bell clapper deformity underwent orchiectomy for torsion.

View Article and Find Full Text PDF

Background: Testicular torsion (TT) is a urological emergency requiring prompt intervention to prevent irreversible damage to the testicle.

Objective: This study aims to assess trends in men's TT referrals, diagnostic evaluation through Doppler sonography (DS) scan, symptoms before surgery, orchidectomy rates, and TT laterality in relation to age and seasons of the year.

Methods: This observational retrospective cohort study included all patients treated for TT at King Abdullah University Hospital between 2009 and 2021.

View Article and Find Full Text PDF

Background: Testicular torsion is a critical urological emergency that can lead to testicular ischemia and significant tissue damage. Citrulline, a supplement known for enhancing cellular metabolism and mitigating oxidative stress and inflammation, has been explored for its protective effects against testicular injury resulting from torsion and detorsion in rat models.

Methods: This study involved 42 Wistar rats, divided into six groups: Sham, torsion/detorsion (T/D), and four groups receiving varying doses of Citrulline (300, 600, 900 ) and vitamin E (20 ).

View Article and Find Full Text PDF

Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!