Numerous Vi capsular polysaccharide (Vi PS) conjugate vaccines to protect young children and infants from Typhoid are either licensed or under development. These vaccines are evaluated by laboratory methods to ensure their potency and that quality requirement are met. International Standard (IS) preparations of Vi PS are needed to calibrate and harmonise these assays. Twenty laboratories from 12 countries participated in a collaborative study to evaluate two candidate ISs: Citrobacter freundii Vi PS (NIBSC code 12/244) and Salmonella enterica serovar Typhi Vi PS (16/126). On the basis of returned results and stability profiles, these standards were established by the WHO Expert Committee on Biological Standardization in Oct 2017 as the First WHO IS for C. freundii Vi PS with a content of 1.94 ± 0.12 mg Vi PS per ampoule (expanded uncertainty with coverage factor of k = 2.11 corresponding to a 95% level of confidence) and the First WHO IS for S. Typhi Vi PS with a content of 2.03 ± 0.10 mg Vi PS per ampoule (expanded uncertainty with coverage factor of k = 2.11), as determined by quantitative NMR. The study also showed the ISs are suitable for physicochemical and immuno assays used for the quantitation of the Vi PS component in Vi PS and conjugate vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biologicals.2018.11.004DOI Listing

Publication Analysis

Top Keywords

citrobacter freundii
8
salmonella enterica
8
enterica serovar
8
serovar typhi
8
conjugate vaccines
8
ampoule expanded
8
expanded uncertainty
8
uncertainty coverage
8
coverage factor
8
factor k = 211
8

Similar Publications

Although metagenomic next-generation sequencing (mNGS) technology has achieved notable outcomes in pathogen detection, there remains a gap in the research regarding its application in predicting the antibiotic resistance of pathogenic bacteria. This study aims to analyze the clinical application value of mNGS in predicting the resistance of carbapenem-resistant Enterobacteriaceae (CRE), as well as the relevant influencing factors, thereby providing valuable insights for clinical antimicrobial therapy. Nonduplicate isolates of bacteria collected from Liaocheng People's Hospital from April 2023 to June 2024 were selected, and CRE bacteria were screened.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Background: Meropenem-vaborbactam (MEM-VAB) is a novel carbapenem-beta-lactamase-inhibitor combination that demonstrates activity against carbapenem-resistant (CR) Gram-negative bacteria, and more specifically KPC-producers, since vaborbactam is an effective inhibitor of KPC enzymes in vitro. This study aimed to describe the initial uses and efficacy of MEM-VAB for compassionate treatment during the first 21 months following its early access in France.

Method: A national multicenter retrospective study was conducted, including all patients who received at least one dose of MEM-VAB between 20 July 2020, and 5 April 2022.

View Article and Find Full Text PDF

The increasing occurrence of extended-spectrum β-lactamase (ESBL)-producing , most commonly , has become a serious problem. The aim of this study was to determine the presence of ESBL-producing Gram-negative bacteria in dairy cattle, goat and sheep farms located in southern Türkiye. Samples (409 quarter milk samples and 110 fresh faecal samples from cattle, 75 bulk tank milk samples and 225 rectal swab samples from goats and sheep) were subjected to selective isolation on MacConkey agar with ceftazidime (2 µg/mL).

View Article and Find Full Text PDF
Article Synopsis
  • Conjugative plasmids like pOXA-48 contribute to the spread and evolution of antimicrobial resistance in bacteria, but can also cause fitness costs to their host.
  • Using transcriptomics, researchers found that the acquisition of pOXA-48 by multidrug-resistant enterobacteria leads to both unique and shared changes in gene expression, particularly affecting a chromosomal operon in certain bacteria.
  • This crosstalk is mediated by a LysR regulator encoded by the plasmid, which enhances the fitness of K. pneumoniae with pOXA-48, indicating that this mechanism may aid in the spread of carbapenem resistance in clinical environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!