Adding the humic acid coating to the nanoparticles of zinc oxide (ZnO-NP) may improve the properties necessary for their colloidal stability. To show how humic acid coating affects the properties of ZnO-NP, three differently sol-gel synthesized ZnO-NP were synthesized: pristine zinc oxide nanoparticles without coating (p-ZnO-NP) and humic acid coated zinc oxide nanoparticles at two different initial concentrations of 20 mg/L (HA20-ZnO-NP) and 200 mg/L (HA200-ZnO-NP) of humic acids in the starting solution. All ZnO-NP were found to be nanocrystals of mineral zincite exhibiting wurtzite crystal symmetry. Transmission electron microscopy showed that capping by humic acids during synthesis decreased the size of HA20-ZnO-NP and HA200-ZnO-NP compared to p-ZnO-NP nanoparticles. Via experiments, HA20-ZnO-NP were found to dissolve less and have a similar or higher stability than both p-ZnO-NP and HA200-ZnO-NP.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15868DOI Listing

Publication Analysis

Top Keywords

zinc oxide
16
oxide nanoparticles
12
humic acids
12
humic acid
12
colloidal stability
8
acid coating
8
humic
6
nanoparticles
5
increased colloidal
4
stability decreased
4

Similar Publications

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

Fabricating ZnO@C composites based on shell-derived cellulose for high performance lithium-ion battery anodes.

Heliyon

December 2024

Department of Chemical, Biological & Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.

In this study, shell-derived cellulose was successfully produced, and the hydrothermal method was employed to generate ZnO@C (ZOC) composites, which were then subjected to calcination in N gas at a temperature of 600 °C for varying durations. X-ray diffraction and thermogravimetric analyses demonstrated that the annealing duration had a substantial impact on the quantities of C and ZnO in the ZOC composites. The scanning electron microscope images indicated the presence of ZnO nanoparticles on the surface of the C phase and revealed a similar morphology among the ZOC composites.

View Article and Find Full Text PDF

Modulating memristors optically paves the way for new optoelectronic devices with applications in computer vision, neuromorphic computing, and artificial intelligence. Here, we report on memristors based on a hybrid material of vertically aligned zinc oxide nanorods (ZnO NRs) and poly(methyl methacrylate) (PMMA). The memristors require no forming step and exhibit the typical electronic switching properties of a bipolar memristor.

View Article and Find Full Text PDF

The challenge of healing diabetic skin wounds presents a significant hurdle in clinical practice and scientific research. In response to this pressing concern, we have developed a temperature-sensitive, in situ-forming hydrogel comprising poly(-isopropylacrylamide---butyl acrylate) -poly(ethylene glycol) -poly(-isopropylacrylamide--butyl acrylate) copolymer, denoted as PEP, in combination with zinc oxide nanoparticles, forming what we refer to as PEP-ZnO hydrogel. The antimicrobial properties of the PEP-ZnO hydrogel against methicillin-resistant were rigorously assessed by using the bacteriostatic banding method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!