Effect of Gold Nanospheres and Nanodots on the Performance of PEDOT:PSS Solar Cells.

J Nanosci Nanotechnol

DST-NRF Centre of Excellence in Strong Materials and the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa.

Published: May 2019

Gold nanospheres were synthesized using a modified Turkevich method ( = 14±4 nm, = 531 nm), while gold nanodots made of spheres (5±2 nm) and non-spherical nanodots (aspect ratio of 1.7±0.4) were synthesized using a modified seed mediated method. The spherical gold nanodots exhibited a transverse excitation mode at 525 nm while the non-spherical gold nanodots showed an additional longitudinal excitation mode observed in the UV-vis spectrum at 794 nm. The gold nanodots also exhibited a surface enhanced Raman effect which significantly influenced the electronic properties of the photovoltaic device. The incorporation of Au nanospheres in a PEDOT:PSS hole transport layer increased the photovoltaic device efficiency by 51%. This was attributed to a decrease in the series resistance which improved the hole transport pathways in the PEDOT:PSS and enhanced the current density of the photovoltaic device. In contrast, incorporation of spherical and non-spherical gold nanodots into the PEDOT:PSS hole transport layer resulted in a decrease in current density and a consequent decrease in efficiency. This can be attributed to the electron-hole recombination and accumulation of space charges by the non-spherical gold nanodots in PEDOT:PSS resulting in an increased series resistance and leakage currents and hence a reduced device performance. Thus, the morphological, structural and opto-electrical properties of the gold nanospheres and nanodots influenced the device performance of the PEDOT:PSS solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15821DOI Listing

Publication Analysis

Top Keywords

gold nanodots
24
gold nanospheres
12
non-spherical gold
12
photovoltaic device
12
hole transport
12
gold
9
nanodots
9
nanospheres nanodots
8
performance pedotpss
8
pedotpss solar
8

Similar Publications

Copper-based sulfides are attractive candidates for NIR I and II responsive photothermal therapy but often suffer from high hydrophobicity, suboptimal photothermal conversion, and poor biostability and biocompatibility. In the present work, a rapid, one-pot synthesis method was developed to obtain Au-doped CuS (ACSH NDs) dual plasmonic nanodots. ACSH NDs exhibit excellent peroxidase-like catalytic activity for pH-responsive OH radical generation along with efficient glutathione depletion under tumor microenvironment mimicking conditions.

View Article and Find Full Text PDF

The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns.

View Article and Find Full Text PDF

CO-Mediated Hydrogen Energy Release-Storage Enabled by High-Dispersion Gold-Palladium Alloy Nanodots.

Small

November 2024

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.

Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO hydrogenation back to FA is a promising approach to constructing a complete CO-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy-support interactions.

View Article and Find Full Text PDF

VEGF-loaded ROS-responsive nanodots improve the structure and function of sciatic nerve lesions in type II diabetic peripheral neuropathy.

Biomaterials

April 2025

Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China; Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, 130041, China. Electronic address:

Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus (DM), significantly contributing to the risk of amputation and mortality. Reactive oxygen species (ROS) can induce both neurological and structural harm through direct impact and pyroptosis, underscoring the critical role of ROS regulation in mitigating DPN. In this research endeavor, we propose harnessing the inherent antioxidant properties of sulfhydryl groups by grafting them onto gold nanodots through an amidation reaction, resulting in the creation of ROS-responsive AuNDs.

View Article and Find Full Text PDF

This study focuses on the development of environmentally friendly Au-CuS/CuInS heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu S/CuInS heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!