Modulating the conformation of the TIR domain by a neoteric MyD88 inhibitor leads to the separation of GVHD from GVT.

Leuk Lymphoma

b Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education , Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan , China.

Published: June 2019

Graft-versus-host disease (GVHD) remains the least curable complication after allogeneic bone marrow transplantation (BMT). Myeloid differentiation factor 88 (MyD88) is an adaptor molecule critically involved in the toll-like receptor (TLR) signaling pathway. The Toll/IL-1 receptor (TIR) domains of MyD88 and TLR are interactional modules responsible for sorting and signaling via direct or indirect TIR-TIR interactions, which can contribute to all phases of GVHD progression. Here, we describe the mechanisms of the novel MyD88 inhibitor, TJ-M2010-5, and the discovery of its immunosuppressive properties in the context of GVHD and the graft-versus-tumor (GVT) effect in a fully MHC-mismatched murine model. TJ-M2010-5 potentially interrupted the conformation of the TIR domain through its predicted DD loops, BB loops, and Poc site, and inhibited the homodimerization of MyD88, the LPS-stimulated activation of dendritic cells, and the priming of donor allogeneic T cell proliferation in a dose-dependent manner. Oral administration of TJ-M2010-5 ameliorated the inflammatory environment, decreased the number of apoptotic cells, increased tissue repair in GVHD target organs, and suppressed lethal GVHD. Further, protection against GVHD by TJ-M2010-5 did not abrogate a GVT effect against SP2/0, a myeloma cell line. Our data define the mechanisms of actions and provide novel insight into the potential clinical uses of TJ-M2010-5 for GVHD prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2018.1537487DOI Listing

Publication Analysis

Top Keywords

conformation tir
8
tir domain
8
myd88 inhibitor
8
gvhd
8
myd88
5
tj-m2010-5
5
modulating conformation
4
domain neoteric
4
neoteric myd88
4
inhibitor leads
4

Similar Publications

Innate immunity relies on Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns. The TIR (Toll/interleukin-1 receptor) domain-containing TLR adaptors TRIF (TIR domain-containing adaptor-inducing interferon-β) and TRAM (TRIF-related adaptor molecule) are essential for MyD88-independent TLR signaling. However, the structural basis of TRIF and TRAM TIR domain-based signaling remains unclear.

View Article and Find Full Text PDF

Activation of a helper NLR by plant and bacterial TIR immune signaling.

Science

December 2024

Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to initiate immune signaling. TIR domains across different kingdoms have NADase activities and can produce phosphoribosyl adenosine monophosphate/diphosphate (pRib-AMP/ADP) or cyclic ADPR (cADPR) isomers. The lipase-like proteins EDS1 and PAD4 transduce immune signals from sensor TIR-NLRs to a helper NLR called ADR1, which executes immune function.

View Article and Find Full Text PDF

Single phage proteins sequester signals from TIR and cGAS-like enzymes.

Nature

November 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 and Tad2 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides.

View Article and Find Full Text PDF

Activation of the Toll-like receptor 4 (TLR4) by bacterial endotoxins in macrophages plays a crucial role in the pathogenesis of sepsis. However, the mechanism underlying TLR4 activation in macrophages is still not fully understood. Here, we reveal that upon lipopolysaccharide (LPS) stimulation, lysine acetyltransferase CBP is recruited to the TLR4 signalosome complex leading to increased acetylation of the TIR domains of the TLR4 signalosome.

View Article and Find Full Text PDF

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly.

Acta Crystallogr D Struct Biol

September 2024

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR-TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MAL) nucleates the assembly of MyD88 into crystalline arrays in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!