We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5056248DOI Listing

Publication Analysis

Top Keywords

inverse compton
8
crystal length
8
length axis
8
spectrometer ultrashort
4
gamma-ray
4
ultrashort gamma-ray
4
gamma-ray pulses
4
pulses photon
4
photon energies
4
energies greater
4

Similar Publications

Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction B(n,α)Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation.

View Article and Find Full Text PDF

Objectives: To evaluate and compare medication adherence and persistence for patients newly initiating single-inhaler triple therapy (SITT) and multiple-inhaler triple therapy (MITT) for chronic obstructive pulmonary disease (COPD) in Japan.

Design: Retrospective, new-user, active comparator, observational cohort study using inverse probability of treatment weighting.

Setting: Health insurance claims data from the Medical Data Vision Co.

View Article and Find Full Text PDF

State-of-the-art electron beams for compact tools of ultrafast science.

Ultramicroscopy

January 2025

FREIA Laboratory, Department of Physics and Astronomy, Uppsala University, Å ngströmlaboratoriet, 75120 Uppsala, Sweden; RIKEN, SPring-8, 679-5148 Hyogo, Japan.

We review state-of-the-art electron beams for single-shot megaelectronvolt ultrafast electron diffraction (MeV-UED) and compact light sources. Our primary focus is on sub-100 femtosecond electron bunches in the 2-30 MeV energy range. We demonstrate that our new and recent simulation results permit significantly improved bunch parameters for these applications.

View Article and Find Full Text PDF

Speckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes.

View Article and Find Full Text PDF

Grating-based phase-contrast computed tomography for breast tissue at an inverse compton source.

Sci Rep

October 2024

Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.

The introduction of mammography screening programs has significantly reduced breast cancer mortality rates. Nevertheless, some lesions remain undetected, especially in dense breast tissue. Studies have shown that phase-contrast imaging can improve breast cancer diagnosis by increasing soft tissue contrast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!