We present the development of a gas nozzle providing high-density gas at elevated temperatures inside a vacuum environment. Fused silica is used as the nozzle material to allow the placement of the nozzle tip in close proximity to an intense, high-power laser beam, while minimizing the risk of sputtering nozzle tip material into the vacuum chamber. Elevating the gas temperature increases the gas-jet forward velocity, allowing us to replenish the gas volume in the laser-gas interaction region between consecutive laser shots. The nozzle accommodates a 50 m opening hole from which a supersonic gas jet emerges. Heater wires are used to bring the nozzle temperature up to 730 °C, while a cooling unit ensures that the nozzle mount and the glued nozzle-to-mount connection is kept at a temperature below 50 °C. The presented nozzle design is used for high-order harmonic generation in hot gases using gas backing pressures of up to 124 bars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5051586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!