AI Article Synopsis

  • The study explores an advanced method using real-time time-dependent density functional theory (RT-TDDFT) combined with relativistic Hamiltonians to analyze electron circular dichroism and optical rotatory dispersion spectra.
  • It introduces a resolution-of-identity approximation for the Coulomb term, leveraging complex quaternion algebra to enhance the RT-TDDFT method.
  • Results indicate that the X2C approach delivers high accuracy and significant speed improvements for calculations, especially with larger systems, making it a promising tool for studying chiroptical spectra.

Article Abstract

We present an implementation and application of electron dynamics based on real-time time-dependent density functional theory (RT-TDDFT) and relativistic 2-component X2C and 4-component Dirac-Coulomb (4c) Hamiltonians to the calculation of electron circular dichroism and optical rotatory dispersion spectra. In addition, the resolution-of-identity approximation for the Coulomb term (RI-J) is introduced into RT-TDDFT and formulated entirely in terms of complex quaternion algebra. The proposed methodology was assessed on the dimethylchalcogenirane series, CHX (X = O, S, Se, Te, Po, Lv), and the spectra obtained by non-relativistic and relativistic methods start to disagree for Se and Te, while dramatic differences are observed for Po and Lv. The X2C approach, even in its simplest one-particle form, reproduces the reference 4c results surprisingly well across the entire series while offering an 8-fold speed-up of the simulations. An overall acceleration of RT-TDDFT by means of X2C and RI-J increases with system size and approaches a factor of almost 25 when compared to the full 4c treatment, without compromising the accuracy of the final spectra. These results suggest that one-particle X2C electron dynamics with RI-J acceleration is an attractive method for the calculation of chiroptical spectra in the valence region.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5051032DOI Listing

Publication Analysis

Top Keywords

electron dynamics
12
resolution-of-identity accelerated
4
accelerated relativistic
4
relativistic two-
4
two- four-component
4
electron
4
four-component electron
4
dynamics approach
4
approach chiroptical
4
chiroptical spectroscopies
4

Similar Publications

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

Selected configuration interaction for high accuracy and compact wave functions: Propane as a case study.

J Chem Phys

January 2025

School of Engineering and Physical Sciences, Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.

Traditionally, because of the limit of full configuration interaction, complete active space (CAS) theory is most often used to model bond dissociation and other dynamical processes where the multi-reference character becomes important. Inconveniently, the CAS method is highly dependent on the choice of active space and, therefore, inherently non-black-box, in addition to the exponential scaling with respect to electrons and orbitals. This illustrates the need for methods that can accurately treat multi-reference electronic structure problems without significant dependence on input parameters.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!