Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity.

J Colloid Interface Sci

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; Clare Hall, University of Cambridge, Herschel Road, Cambridge CB3 9AL, United Kingdom.

Published: March 2019

Graphitic carbon nitride (g-CN) is a visible light active semiconductor. However, low conductivity and high recombination rate of photogenerated electrons and holes limit its application in photocatalysis. In this work, we design and synthesize hierarchically porous zinc oxide/graphitic carbon nitride (ZnO/g-CN) microspheres with type-II heterojunction to effectively degrade rhodamine B (RhB) via increasing the charge-separation efficiency. The ultraviolet-visible (UV-Vis) absorption spectra, Mott-Schottky plots and valence band X-ray photoelectron spectroscope confirm the formation of type-II heterojunction between ZnO nanocrystals and g-CN nanosheets. As a result, the 1.5-ZnO/g-CN composite (the mass ratio of zinc acetate dihydrate to g-CN is 1.5) exhibits the highest photocatalytic activity with good stability and higher photocatalytic degradation rate comparing to pure g-CN and pure ZnO. In addition, our results confirm that O and h are the main active species for ZnO/g-CN in degradation of RhB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.11.076DOI Listing

Publication Analysis

Top Keywords

carbon nitride
12
hierarchically porous
8
porous zinc
8
zinc oxide/graphitic
8
oxide/graphitic carbon
8
photocatalytic activity
8
type-ii heterojunction
8
type heterojunction
4
heterojunction hierarchically
4
nitride microspheres
4

Similar Publications

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Valorization of Selected Biomass-Derived Molecules on Leaves-Biotemplated TiO-g-CN Photocatalysts.

Biomimetics (Basel)

November 2024

Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.

Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.

View Article and Find Full Text PDF

Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).

View Article and Find Full Text PDF

Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-dimethylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants.

J Colloid Interface Sci

December 2024

State Key Laboratory of Photocatalysis On Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photocatalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photocatalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings.

View Article and Find Full Text PDF

To address the limitations of carbon nitride in photocatalysis, we propose constructing a three-dimensional interwoven SiC/g-CN composite structure. Utilizing the strong microwave-thermal conversion characteristics of SiC whiskers, localized "hot spots" are generated, which induce rapid thermal gradients, promoting rapid polymerization of urea and in situ formation of the interwoven network. This unique structure strengthens the interaction between these two components, creates multiple electron transport pathways, enhances CO adsorption, and effectively improves charge separation while reducing photogenerated carrier recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!