A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combining resting state functional MRI with intraoperative cortical stimulation to map the mentalizing network. | LitMetric

Combining resting state functional MRI with intraoperative cortical stimulation to map the mentalizing network.

Neuroimage

Department of Neurosurgery, Gui de Chauliac Hospital, 80 avenue Augustin Fliche, 34295, France; National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, France; University of Montpellier, France. Electronic address:

Published: February 2019

Objective: To infer the face-based mentalizing network from resting-state functional MRI (rsfMRI) using a seed-based correlation analysis with regions of interest identified during intraoperative cortical electrostimulation.

Methods: We retrospectively included 23 patients in whom cortical electrostimulation induced transient face-based mentalizing impairment during 'awake' craniotomy for resection of a right-sided diffuse low-grade glioma. Positive stimulation sites were recorded and transferred to the patients' preoperative normalized MRI, and then used as seeds for subsequent seed-to-voxel functional connectivity analyses. The analyses, conducted with an uncorrected voxel-level p-value of 0.001 and a false-discovery-rate cluster-level p-value of 0.05, allowed identification of the cortical structures, functionally coupled with the mentalizing-related sites.

Results: Two clusters of responsive stimulations were identified intraoperatively - one in the right dorsolateral prefrontal cortex (dlPFC, n = 13) and the other in the right inferior frontal gyrus (IFG, n = 10). A whole group level analysis revealed that stimulation sites correlated mainly with voxels located in the pars triangularis of the IFG, the dorsolateral and dorsomedial prefrontal cortices, the temporo-parietal junction, the posterior superior temporal sulcus, and the posterior inferior temporal/fusiform gyrus. Other analyses, taking into consideration the location of the responsive sites (IFG versus dlPFC cluster), highlighted only minor differences between both groups.

Conclusions: The present study successfully demonstrated the involvement of a large-scale neural network in the face-based mentalizing that strongly matches networks, classically identified using task-based fMRI paradigms. We thus validated the combination of rsfMRI and stimulation mapping as a powerful approach to identify functional networks in brain-damaged patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.11.046DOI Listing

Publication Analysis

Top Keywords

face-based mentalizing
12
functional mri
8
intraoperative cortical
8
mentalizing network
8
stimulation sites
8
combining resting
4
resting state
4
functional
4
state functional
4
mri intraoperative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!