Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics.

Phys Rev Lett

Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA.

Published: November 2018

We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressurelike) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.203601DOI Listing

Publication Analysis

Top Keywords

entanglement cavity
8
tripartite entanglement
8
cavity magnomechanical
8
magnons cavity
8
photons phonons
8
cavity photons
8
cavity
6
magnons
5
magnon-photon-phonon entanglement
4
cavity magnomechanics
4

Similar Publications

Entanglement and quantum discord in the cavity QED models.

Heliyon

January 2025

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.

We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.

View Article and Find Full Text PDF

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

Highly Compressible Micro/Nanofibrous Sponges with Thin-Walled Cavity Structures Enable Low-Frequency Noise Reduction.

Nano Lett

January 2025

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.

Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!