The role of soluble microbial products (SMP), the most important component of effluent organic matter from municipal wastewater treatment plants, in sulfate radical (SO)-based advanced oxidation technologies (AOTs) remains substantially unclear. In this study, we first utilized a suite of macro- and microanalytical techniques to characterize the SMP from a membrane bioreactor for its fundamental molecular, spectroscopic, and reactivity properties. The degradation kinetics of three representative pharmaceuticals (i.e., naproxen, gemfibrozil, and sulfadiazine) in the presence of SMP was significantly reduced as compared to in its absence. Possible mechanisms for the interference by SMP in degrading these target compounds (TCs) were investigated. The low percentage of bound TCs to SMP ruled out the cage effect. The measurement of steady-state O concentration indicated that formation of O upon UV irradiation on SMP was not primarily responsible for the degradation of TCs. However, the comparative and quenching results reveal that SMP absorbs UV light acting as an inner filter toward the TCs, and meanwhile scavenges SO with a high second-order rate constant of 2.48 × 10 M s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b05129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!