A major bottleneck of mass spectrometric metabolomic analysis is still the rapid detection and annotation of unknown m/ z features across biological matrices. This kind of analysis is especially cumbersome for complex samples with hundreds to thousands of unknown features. Traditionally, the annotation was done manually imposing constraints in reproducibility and automatization. Furthermore, different analysis tools are typically used at different steps which requires parsing of data and changing of environments. We present here MetNet, implemented in the R programming language and available as an open-source package via the Bioconductor project. MetNet, which is compatible with the output of the xcms/CAMERA suite, uses the data-rich output of mass spectrometry metabolomics to putatively link features on their relation to other features in the data set. MetNet uses both structural and quantitative information on metabolomics data for network inference and enables the annotation of unknown analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b04096DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
annotation unknown
8
unknown features
8
metnet
4
metnet metabolite
4
metabolite network
4
network prediction
4
prediction high-resolution
4
high-resolution mass
4
data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!