Metabolome analysis using capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) has the potential to improve coverage of metabolite detection because of its high selectivity and sensitivity. Configuration of the interface between CE and HRMS to meet the ground connection is essential for enabling independent regulation of the electrical currents in the CE and electrospray field. In the present study, we applied an electrospray-ionization adapter equipped with a grounded nebulizer to CE-HRMS and tested the analytical performance for 34 charged compounds. The extracted-ion electropherograms, consisting of seven sets of isomers, showed reasonable peak shapes and separation for the annotation of each metabolite. The levels of 34 target analytes in a standard mixture were determined with a dynamic range of at least 10, maintaining linearity with r > 0.9. The repeatability and intermediate precision above the lower limit of quantification showed the relative standard deviation to be lower than 20%. In the spike-recovery experiment, 27 of the 34 metabolites in plasma extract were recovered at a rate of 80 to 120%, suggesting high accuracy. Furthermore, we assessed the feasibility of our platform in metabolome analysis using human-plasma extract. The results showed successful detection of 270 metabolites, indicating the potential of our platform to yield higher coverage of the metabolome. In addition, analysis of dilution integrity demonstrated the quantitative ability of metabolome analysis with CE-HRMS, although the existence of saturation or matrix effects were seen in the case of 33 of the metabolites. This study indicates that our platform has great potential for large-scale metabolome analysis of plasma for biological studies and clinical biomarker screening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b02994DOI Listing

Publication Analysis

Top Keywords

metabolome analysis
16
capillary electrophoresis
8
electrophoresis coupled
8
coupled high-resolution
8
high-resolution mass
8
mass spectrometry
8
analysis
6
metabolome
5
metabolomics platform
4
platform capillary
4

Similar Publications

Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions.

View Article and Find Full Text PDF

Omics data provide a plethora of quantifiable information that can potentially be used to identify biomarkers targeting the physiological processes and ecological phenomena of organisms. However, omics data have not been fully utilized because current prediction methods in biomarker construction are susceptible to data multidimensionality and noise. We developed OmicSense, a quantitative prediction method that uses a mixture of Gaussian distributions as the probability distribution, yielding the most likely objective variable predicted for each biomarker.

View Article and Find Full Text PDF

Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions.

J Adv Res

January 2025

Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:

Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.

Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.

Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.

View Article and Find Full Text PDF

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Follicular ovarian cysts (FOCs) are prevalent reproductive disorders in both humans and animals, especially in livestock, where they cause economic losses by reducing fertility and productivity. FOCs are marked by a dominant follicle that fails to ovulate, disrupting the estrous cycle and reproductive efficiency. Previous studies indicate that the follicular fluid (FF) in cystic ovaries shows oxidative imbalance, affecting oocyte quality by altering glutathione peroxidase (GPX1) and selenium pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!