The stability and unexpected chemistry of oxide clusters.

Phys Chem Chem Phys

Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141700, Russia.

Published: December 2018

Using evolutionary structure prediction and ab initio thermodynamics, we determine stable compositions and structures of small CemOn and FemOn clusters at realistic temperatures and oxygen pressures. We use second energy differences as the criterion determining clusters of particular stability ("magic" clusters), whereas HOMO-LUMO gaps are used to gauge chemical inertness - i.e. the ability of a cluster to survive in a complex chemical environment. We find that, similar to atomic nuclei (which are clusters made of neutrons and protons), compositional space of two-component clusters also has ridges and islands of stability, surrounded by sea of instability. Long ridges of stability correspond to stoichiometric compositions - e.g., (CeO2)k, (Ce2O3)k, (FeO)k, (Fe2O3)k and (Fe3O4)k series of clusters, while "islands of stability" can have very unexpected compositions. For example, at room temperature and ambient atmosphere, superoxidized Fe4O8 clusters will be dominant among the Fe4On clusters. We emphasize that stability is dictated not only by closed geometric and electronic shells, but also by magnetism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp03519aDOI Listing

Publication Analysis

Top Keywords

clusters
9
stability
5
stability unexpected
4
unexpected chemistry
4
chemistry oxide
4
oxide clusters
4
clusters evolutionary
4
evolutionary structure
4
structure prediction
4
prediction initio
4

Similar Publications

Temporal and Spatial Metabolic Shifts Revealing the Transition from Ulcerative Colitis to Colitis-Associated Colorectal Cancer.

Adv Sci (Weinh)

January 2025

Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.

Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the "normal-to-normal adjacent tissue (NAT)-to-tumor" transition, and temporal metabolic trajectories in the "colitis-to-dysplasia-to-carcinoma" transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively.

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy.

Adv Mater

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China.

Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs).

View Article and Find Full Text PDF

Exploring Social-Ecological Pathways From Sexual Identity to Sleep Among Chinese Women: Structural Equation Modeling Analysis.

JMIR Public Health Surveill

January 2025

School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F, Academic Building, 3 Sassoon Road, Pok Fu Lam, Hong Kong, China (Hong Kong), 852 39176972.

Background: Women and sexual minority individuals have been found to be at higher risk for experiencing poor sleep health compared to their counterparts. However, research on the sleep health of sexual minority women (SMW) is lacking in China.

Objective: This study aimed to examine sleep quality and social support for Chinese women with varied sexual identities, and then investigate the in-depth relationships between sexual identity and sleep.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!