Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to ensure better use of treated wastewater (TWW), we investigated the effect of three increasing doses of TWW, 10%, 50%, and 100%, on biochemical and transcriptomic statuses of earthworms Eisenia andrei exposed during 7 and 14 days. The effect of TWW on the oxidative status of E. andrei was observed, but this effect was widely dependent on the dilution degree of TWW. Results showed a significant decrease in the catalase (CAT) activity and an increase in the glutathione-S-transferase (GST) activity, and considerable acetylcholinesterase (AChE) inhibition was recorded after 14 days of exposure. Moreover, malondialdehyde (MDA) accumulation was found to be higher in exposed animals compared to control worms. The gene expression level revealed a significant upregulation of target genes (CAT and GST) during experimentation. These data provided new information about the reuse of TWW and its potential toxicity on soil organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-3794-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!