Hybrid durum has a promising yield potential coupled with good quality, but the efficiency of hybrid seed production must be improved. Hybrid breeding is a tremendous success story in many crops, but has not yet made a breakthrough in wheat, mainly due to inefficient hybrid seed production. In this study, we investigated the heterosis for grain yield and important quality traits in durum wheat of 33 hybrids built up from 24 parental lines, as well as the variation in anther extrusion and its genetic architecture in a vast collection of Central European elite durum lines. Average mid-parent heterosis for grain yield was 5.8%, and the best hybrids had a more than one ton per hectare higher grain yield than the best line cultivars. Furthermore, hybrids had a higher grain yield than lines at a given level of protein content or sedimentation value, underpinning their potential for a sustainable agriculture. However, seed set in our experimental hybrid seed production was low. We therefore evaluated 315 elite durum lines for visual anther extrusion, which revealed a large genetic variance and a heritability of 0.66. Results from association mapping suggest a mainly quantitative inheritance of visual anther extrusion with few putative QTL being identified, the largest one explaining less than 20% of the genotypic variance. Genome-wide prediction taking the four largest putative QTL into account yielded a mean cross-validated prediction ability of 0.55. Consequently, breeding for improved male floral characteristics is feasible in durum wheat, but should be mainly based on phenotypic selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-018-3248-6 | DOI Listing |
J Appl Genet
January 2025
Department of Plant Protection, Division of Plant Pathology and Mycology, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 50-363, Wrocław, Poland.
Fusarium stalk rot is the main factor reducing the quality of maize grain and leads to significant yield losses, which that ranges from 20 to 100%, depending on the degree of infection and weather conditions. Understanding its genetic mechanism is key to improving grain quality and ultimate yield. An experiment with 26 doubled haploid (DH) lines of maize was conducted in the northern part of the Lower Silesia Province in Poland over a ten-year period (2013-2022).
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.
Sci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA. Electronic address:
The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
January 2025
Reports an error in "A grain of truth in the grain size effect: Retrieval practice is more effective when interspersed during learning" by Hilary J. Don, Shaun Boustani, Chunliang Yang and David R. Shanks (, 2024[Nov], Vol 50[11], 1791-1810).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!