Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of and bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. and can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of and during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249378PMC
http://dx.doi.org/10.3389/fmicb.2018.02646DOI Listing

Publication Analysis

Top Keywords

natural-gas wells
12
hydraulically fractured
8
biogeochemical cycling
8
produced fluids
8
members influence
4
influence system
4
system biogeochemistry
4
biogeochemistry early
4
early production
4
production hydraulically
4

Similar Publications

Gas-water distribution is significant in the determination of hydrocarbon accumulation mechanisms in gas reservoirs, especially for the exploitation of tight sandstone reservoirs. One of such examples are the gas reservoirs in the Yishan Slope in China, where the internal relationship between gas-water distribution is poorly understood. The pattern and controlling factors for gas-water distribution in tight sandstones gas reservoirs in the Yishan Slope have been examined from macro (such as sedimentary and anticlinal structures) and micro (such as pore throat size, heterogeneity) perspectives, using data from rock eval pyrolysis, sedimentary structure, sediment diagenesis, gas migration, mercury injection experiments, and well logs.

View Article and Find Full Text PDF

Hydrogen is a promising clean energy source with geological reserves widely distributed globally, offering an annual flow exceeding 23 trillion grams. However, natural hydrogen extraction wells face unique safety challenges compared to conventional oil and gas wells. This paper reviews well safety concerns such as tubing/casing damage, cement/sealant failure, and excessive annular pressure buildup.

View Article and Find Full Text PDF

As many oil and gas reservoirs approach depletion stages in the future, alongside growing energy storage demands, constructing gas storage facilities becomes critical for ensuring a stable natural gas supply. Consequently, a comprehensive geological analysis is essential to evaluate the feasibility of converting depleted gas reservoirs into gas storage facilities. The W gas reservoir in the Sichuan Basin, China, is nearing depletion and presents potential for conversion into a gas storage facility.

View Article and Find Full Text PDF

In this work, taking wells LD1, LD2, and LY2 in the Laifeng-Xianfeng area as the research target, through core description, intensive core sampling, experimental analysis, imaging logging and other methods, the characteristics of graptolite zone development, organic carbon content, mineral composition, shale reservoir properties and the gas-bearing properties of the Wufeng-Longmaxi Formation shale are systematically analyzed. The main factors affecting the gas-bearing capacity of the Wufeng-Longmaxi Formation shale are extensively evaluated. The results reveal the following: ① The Wufeng-Longmaxi Formation shale, which was deposited in a deep-water shelf environment, has a large thickness (50-60 m) and a stable distribution.

View Article and Find Full Text PDF

In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!