There is a pressing need for more effective therapies to treat patients with T-cell lymphomas (TCLs), including first-line approaches that increase the response rate to cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) chemotherapy. We characterized the mitochondrial apoptosis pathway in cell lines and patient-derived xenograft (PDX) models of TCL and assessed the in vitro efficacy of BH3 mimetics, including the BCL2 inhibitor venetoclax, the BCL2/BCL-xL inhibitor navitoclax, and the novel MCL1 inhibitor AZD5991. The abundance of antiapoptotic BCL2 family members based on immunoblotting or RNA transcript levels correlated poorly with the activity of BH3 mimetics. In contrast, the functional approach BH3 profiling reliably predicted sensitivity to BH3 mimetics in vitro and in vivo. We used BH3 profiling to select TCL PDX that were dependent on MCL1. Mice xenografted with these PDX and treated with AZD5991 had markedly improved survival. The combination of AZD5991 and CHOP achieved synergy based on survival improvement beyond a mathematical "sum of benefits" model. Thus, MCL1 inhibition is a promising strategy as both a single agent and in combination with chemotherapy for patients with TCL and functional dependence on MCL1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367646PMC
http://dx.doi.org/10.1182/blood-2018-07-865527DOI Listing

Publication Analysis

Top Keywords

bh3 mimetics
12
mcl1 inhibition
8
t-cell lymphomas
8
bh3 profiling
8
mcl1
5
bh3
5
biomarker-driven strategy
4
strategy mcl1
4
inhibition t-cell
4
lymphomas pressing
4

Similar Publications

Apoptosis in Cancer Biology and Therapy.

Annu Rev Pathol

January 2025

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:

Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death.

View Article and Find Full Text PDF

Valproic Acid Enhances Venetoclax Efficacy in Targeting Acute Myeloid Leukemia.

Diseases

January 2025

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.

Background: Acute myeloid leukemia (AML) is a common and aggressive form of leukemia, yet current treatment strategies remain insufficient. Venetoclax, a BH3-mimetic approved for AML treatment, induces Bcl-2-dependent apoptosis, though its therapeutic efficacy is still limited. Therefore, new strategies to enhance the effect of venetoclax are highly sought.

View Article and Find Full Text PDF

Treatment of chronic lymphocytic leukemia (CLL) has been revolutionized with the introduction of small molecule inhibitors targeting both the B-cell receptor (BCR) signaling pathway and B-cell lymphoma-2 (BCL-2) family of proteins. Inhibitors of Bruton's tyrosine kinase (BTK) and the BH3 mimetic venetoclax are bothcurrently used as the standard of care for patients in the frontline and relapsed/refractory setting of CLL. With the clinical success of both these classes of therapies, sequencing of these agents has become a major challenge in treatment of CLL.

View Article and Find Full Text PDF

BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!