Bacteria under external stress can reveal unexpected emergent phenotypes. We show that the intensely studied bacterium can transform into long, highly motile helical filaments poized at a torsional buckling criticality when exposed to minimum inhibitory concentrations of several antibiotics. While the highly motile helices are physically either right- or left-handed, the motile helices always rotate with a right-handed angular velocity [Formula: see text], which points in the same direction as the translational velocity [Formula: see text] of the helix. Furthermore, these helical cells do not swim by a "run and tumble" but rather synchronously flip their spin [Formula: see text] and thus translational velocity-backing up rather than tumbling. By increasing the translational persistence length, these dynamics give rise to an effective diffusion coefficient up to 20 times that of a normal cell. Finally, we propose an evolutionary mechanism for this phenotype's emergence whereby the increased effective diffusivity provides a fitness advantage in allowing filamentous cells to more readily escape regions of high external stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304939PMC
http://dx.doi.org/10.1073/pnas.1809374115DOI Listing

Publication Analysis

Top Keywords

motile helices
12
[formula text]
12
external stress
8
highly motile
8
velocity [formula
8
emergence critically
4
critically buckled
4
motile
4
buckled motile
4
helices stress
4

Similar Publications

Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D.

Adv Sci (Weinh)

December 2024

School of Engineering Mathematics and Technology & Bristol Robotics Laboratory, University of Bristol, Bristol, BS8 1UB, UK.

Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility.

View Article and Find Full Text PDF

During host infection, and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments-helical, circular, twirling and patch, pendulum or rolling-is unclear.

View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF
Article Synopsis
  • Living organisms can interact in ways where forces are not equal or opposite, which is often not seen in synthetic systems.
  • This study explores how combining non-motile passive particles with motile active particles under an external AC electric field can create complex assemblies and measure the forces between them.
  • Results show that different propulsion methods of active particles affect their interactions; for instance, helically propelled active particles create dynamic clusters with adjustable properties, shedding light on designing advanced materials.
View Article and Find Full Text PDF

c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!