The prototypic protein disulfide isomerase (PDI), encoded by the gene, has been described as a survival factor in ischemic cardiomyopathy. However, the role of protein disulfide isomerase associated 6 (PDIA6) under hypoxic conditions in the myocardium remains enigmatic, and it is unknown whether the gut microbiota influences the expression of PDI and PDIA6 under conditions of acute myocardial infarction. Here, we revealed that, in addition to the prototypic PDI, the PDI family member PDIA6, a regulator of the unfolded protein response, is upregulated in the mouse cardiomyocyte cell line HL-1 when cultured under hypoxia. , in the left anterior descending artery (LAD) ligation mouse model of acute myocardial infarction, similar to PDI, PDIA6 protein expression was enhanced in the infarcted area (LAD+) relative to uninfarcted sham tissue or the neighbouring area at risk (LAD-) of C57BL/6J mice. Interestingly, we found that ex-germ-free (ex-GF) mice subjected to the LAD ligation model for 24 h had a reduced ejection fraction compared with their conventionally raised (CONV-R) SPF controls. Furthermore, the LAD+ area in the infarcted heart of ex-GF mice showed reduced PDIA6 expression relative to CONV-R controls, suggesting that the presence of a gut microbiota enhanced LAD ligation-triggered PDIA6 expression. Collectively, our results demonstrate that PDIA6 is upregulated in cardiomyocytes as a consequence of hypoxia. In the LAD mouse model, PDIA6 was also increased in the infarcted area under conditions, but this increase was suppressed in ex-GF mice relative to CONV-R controls.This article has an associated First Person interview with the first author of the paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361221 | PMC |
http://dx.doi.org/10.1242/bio.038851 | DOI Listing |
Andrology
August 2024
Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
J Virol
April 2024
Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
Anticancer Res
December 2023
Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, U.K.
Background/aim: PDIA6 is a disulphide isomerase of the PDI family, known to mediate disulphide bond formation in the endoplasmic reticulum. However, PDI-related proteins also function in other parts of the cell and PDIA6 has been shown to be involved in many types of cancers. We previously identified PDIA6 as a putative Maspin interactor.
View Article and Find Full Text PDFAntiviral Res
April 2023
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA. Electronic address:
Venezuelan equine encephalitis virus (VEEV) is an alphavirus transmitted by mosquitos that can cause a febrile illness and induce severe neurological complications in humans and equine populations. Currently there are no FDA approved vaccines or antiviral treatments to combat VEEV. Proteomic techniques were utilized to create an interactome of the E1 fusion glycoprotein of VEEV.
View Article and Find Full Text PDFRedox Biol
February 2023
CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Québec, Canada. Electronic address:
Protein disulfide isomerases (PDIs) catalyze redox reactions that reduce, oxidize, or isomerize disulfide bonds and act as chaperones of proteins as they fold. The characteristic features of PDIs are the presence of one or more catalytic thioredoxin (TRX)-like domains harboring typical CXXC catalytic motifs responsible for redox reactions, as well as non-catalytic TRX-like domain. As increasing attention is paid to oxidative post-translational modifications of cysteines (Cys ox-PTMs) with the recognition that they control cellular signaling, strategies to identify sites of Cys ox-PTM by redox proteomics have been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!