Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem?

Microbiology (Reading)

2​UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.

Published: February 2019

The strength, flexibility and light weight of traditional oil-derived plastics make them ideal materials for a large number of applications, including packaging, medical devices, building, transportation, etc. However, the majority of produced plastics are single-use plastics, which, coupled with a throw-away culture, leads to the accumulation of plastic waste and pollution, as well as the loss of a valuable resource. In this review we discuss the advances and possibilities in the biotransformation and biodegradation of oil-based plastics. We review bio-based and biodegradable polymers and highlight the importance of end-of-life management of biodegradables. Finally, we discuss the role of a circular economy in reducing plastic waste pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000749DOI Listing

Publication Analysis

Top Keywords

plastic waste
16
waste pollution
8
plastics
5
plastic
4
waste global
4
global challenge
4
challenge biodegradable
4
biodegradable plastics
4
plastics answer
4
answer plastic
4

Similar Publications

Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion.

J Am Chem Soc

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Poly(vinyl chloride) (PVC) and polystyrene (PS) are among the least recycled plastics. In this work, we developed a simple and novel strategy to valorize PVC and PS plastics via photothermal conversion to (1-chloroethyl)benzene, a commodity chemical with excellent versatility. As PVC is known to release HCl gas and decompose into conjugated polyenes, we envisioned a dual role for PVC plastics.

View Article and Find Full Text PDF

The plastic waste accumulation requires facile yet effective solutions. Currently mechanical recycling typically leads to downcycling, while the environmental footprint of chemical recycling is often unacceptable. Here, we introduce a dual circularity concept, where rational molecular design paves the way for complementary closed-loop mechanical and chemical recyclability under mild conditions.

View Article and Find Full Text PDF

Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials.

Environ Res

January 2025

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.

View Article and Find Full Text PDF

In clearance measurements involving a single material type, a conversion factor was applied to convert measurement results to activity based on an assumed uniform density. However, this factor has been found to underestimate activity in material mixtures. In this study, we proposed a method to identify the location with the lowest detection sensitivity (minimum location) in a mixture and evaluated its applicability to the conversion factor.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China. Electronic address:

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!