A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management. | LitMetric

Wastewater effluent makes up an increasingly large percentage of surface water supplies, but the impacts of discharge of effluent organic matter (EfOM) on receiving riverine and lacustrine dissolved organic matter (DOM) is still largely unknown. In the present study, we investigated variations of DOM quantity and quality along wastewater treatment plants (WWTPs)-river-lake continuum during drought periods, and made a tentative discussion on its implications for watershed environmental management. We used dissolved organic carbon (DOC) concentrations, UV absorption coefficients and excitation-emission-matrixs (EEMs) fluorescence spectroscopy combined with fluorescence regional integration (FRI) to characterize EfOM and riverine and lacustrine DOM along WWTPs-river-Chaohu Lake continuum. Our results showed that changes in DOM quantity and quality in receiving waterbodies were related to EfOM discharged from WWTPs and external input of DOM along inflowing river. Specifically, we found that the ratio of protein-like/humic-like notably decreased (P < 0.05), and %humic-like increased (P < 0.01) along WWTPs-river-lake continuum. Furthermore, the recent autochthonous contribution index (BIX) and the humification index (HIX) values showed that these variations of DOM composition were attributed to microbial degradations in receiving waterbodies. We concluded that the changes of DOM quantity and quality along WWTPs-river-lake continuum had important implications for DOM behaviors, and offered some novel ideas for watershed environmental management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.11.037DOI Listing

Publication Analysis

Top Keywords

dom quantity
12
variations dom
8
wwtps-river-lake continuum
8
implications watershed
8
watershed environmental
8
environmental management
8
organic matter
8
riverine lacustrine
8
dissolved organic
8
quantity quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!