The plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken. In this study, a total of 31 non-redundant TCP transcription factors of potato were identified and divided into two subfamilies including three distinct subclades. The various orthologous TCP genes in Arabidopsis, rice, potato and tomato were identified using synteny and phylogenetic analysis. Protein motif analysis demonstrated that StTCPs in the same subclade shared similar conserved motif structures. Gene structure analysis showed that almost all StTCPs displayed highly conserved exon-intron organization. The analysis of StTCP gene promoter regions revealed that multiple cis-acting elements were involved in plant growth, development, hormone responses as well as stress responses. The result of StTCP gene expression profiles showed they had tissue-specific expression patterns which implied their differentiated functions. According to the results of quantitative RT-PCR (qRT-PCR), 7 StTCP genes were dramatically up-regulated during the release of tuber dormancy and some specific StTCP genes were strongly responding to different abiotic stresses and multiple hormones, which suggested they had important roles in potato growth and development processes. The results of our findings could provide comprehensive insights in StTCP family genes of potato for further functional investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2018.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!