Long-duration spaceflights reportedly induce immune dysregulation, which is considered a risk to astronaut safety and mission success. Recent studies have examined the impact of spaceflight on markers of adaptive and innate immunity, but no study, to date, has comprehensively evaluated humoral immunity and serological markers of B cell function. The aim of this study was to characterize changes in B cell numbers and phenotypes, along with plasma Igs and polyclonal free light chains (FLCs)-near-"real-time" biomarkers of Ig synthesis-in response to an ~6-mo mission to the International Space Station (ISS). Whole-blood samples were collected before flight, during flight ("Early flight," "Mid-flight," and "Late flight"), immediately upon return, and during a recovery period (R + 18, R + 30/R + 33, and R + 60/R + 66) from 23 ISS crew members. B Cell counts and phenotypes were measured throughout the duration of the mission, along with total plasma Ig and FLC levels. There was no effect of spaceflight on the number and proportion of the different B cell subsets. There was no difference in kappa FLC between preflight samples and either in-flight or recovery samples ( P > 0.05), and only a marginal reduction was observed in lambda FLC levels upon return to Earth ( P < 0.05). Furthermore, IgG and IgM remained unchanged during and after spaceflight compared with preflight values ( P > 0.05). Of note, plasma IgA concentrations were elevated in-flight compared with baseline and recovery values ( P < 0.05). These results indicate that B cell homeostasis is maintained during long-duration spaceflight, advocating for potential in-flight vaccination as viable countermeasures against viral reactivation during exploration-class missions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397409 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00789.2018 | DOI Listing |
BMC Cancer
January 2025
College of Food and Biological Engineering, Chengdu University, Chengdu, 610000, People's Republic of China.
Chin J Integr Med
January 2025
Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses.
View Article and Find Full Text PDFCommun Chem
January 2025
Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!