Packaging of DNA into chromatin regulates DNA accessibility and consequently all DNA-dependent processes. The nucleosome is the basic packaging unit of DNA forming arrays that are suggested, by biochemical studies, to fold hierarchically into ordered higher-order structures of chromatin. This organization has been recently questioned using microscopy techniques, proposing an irregular structure. To address the principles of chromatin organization, we applied an in situ differential MNase-seq strategy and analyzed in silico the results of complete and partial digestions of human chromatin. We investigated whether different levels of chromatin packaging exist in the cell. We assessed the accessibility of chromatin within distinct domains of kb to Mb genomic regions, performed statistical analyses and computer modelling. We found no difference in MNase accessibility, suggesting no difference in fiber folding between domains of euchromatin and heterochromatin or between other sequence and epigenomic features of chromatin. Thus, our data suggests the absence of differentially organized domains of higher-order structures of chromatin. Moreover, we identified only local structural changes, with individual hyper-accessible nucleosomes surrounding regulatory elements, such as enhancers and transcription start sites. The regulatory sites per se are occupied with structurally altered nucleosomes, exhibiting increased MNase sensitivity. Our findings provide biochemical evidence that supports an irregular model of large-scale chromatin organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379673 | PMC |
http://dx.doi.org/10.1093/nar/gky1203 | DOI Listing |
J Eukaryot Microbiol
January 2025
Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia.
The genus Pelomyxa includes 15 species of anaerobic Archamoebae with remarkable diverse nucleoplasm morphology. Nuclear structures, like chromatin and nucleoli, of several members of the genus was previously identified only based on their ultrastructural similarity to typical structures of somatic cells of higher eukaryotes. Here, we explored an easy-to-use, one-step intravital staining method with DAPI and pyronin to distinguish between DNA and RNA structures in nuclei of unfixed cells of Pelomyxa belevskii and P.
View Article and Find Full Text PDFNucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFGene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner.
View Article and Find Full Text PDFThe formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding.
View Article and Find Full Text PDFEstablishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, , provides one of the best-known case studies of this process. In Drosophila, localized mRNA of serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!