Purpose: To evaluate the feasibility of 3D anterior segment optical coherence tomography (AS-OCT) for the detection of corneal endothelial features in patients with Fuchs' Endothelial Corneal Dystrophy (FECD).
Methods: Twenty patients with clinical diagnosis of FECD (group A), and 20 control subjects (group B) were enrolled. In all patients a complete ophthalmological examination was performed, including best corrected visual acuity (BCVA), slit lamp examination for subjective grading of FECD and corneal endothelial specular microscopy. A 512x128 AS-OCT cube centered on the corneal apex was performed, and then the inner surface of the cornea was visualized and analyzed individually.
Results: Overall, the study participants were adults (mean age was 57.35 ± 8.45 years [mean ± SD] 80% female) with a BCVA ranged from 1.3 to 0 LogMAR. The OCT analysis disclosed three different patterns of the corneal endothelium (1, 2, 3) according to the signal distribution and the level of reflectivity: a homogenous, hypo-reflective surface (pattern 1); the presence of hyper-reflective orange-yellowish points (pattern 2); and a mottled appearance with a variable number of hyper-reflective areas (pattern 3). The distributions of these morphological models in the two populations were as follows: patterns 1, 2 and 3 were observed respectively in 0%, 80%, and 20% of patients in group A, and in 80%, 20% and 0% of subjects in group B. Correlation analysis unveiled a positive relationship between OCT corneal endothelium reflectivity and the clinical severity score (assessed with biomicroscopy), as well as an inverse relationship between the OCT pattern and the integrity of corneal endothelium.
Conclusion: 3D AS-OCT is a useful tool in investigation of endothelial features and therefore may represent a valuable support in the setting of FECD diagnosis and staging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264151 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207891 | PLOS |
Zhonghua Yan Ke Za Zhi
January 2025
Department of Ophthalmology, Affiliated Hospital of Guangdong Medical University, Zhanjiang524000, China.
To observe the characteristics of ocular biological parameters in children with transfusion-dependent β-thalassemia (TDT) and the effect of iron chelator treatment on them. This was a cross-sectional study. Thirty-two children with TDT (TDT group) and 64 healthy children (control group) who were treated in the Affiliated Hospital of Guangdong Medical University from October 2022 to June 2023 were included.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFSci Rep
December 2024
Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, UK.
Fuchs' endothelial corneal dystrophy (FECD) is a common sight-threatening condition characterised by pathological changes in the posterior cornea. Here we report observations by light, transmission and volume scanning electron microscopy on changes in the endothelium and matrix associated with the characteristic deformations of Descemet's membrane, termed guttae. Specimens were archived full-thickness human corneal tissue, removed during graft surgery, that had been fixed, stained and embedded by conventional processing methods for examination by transmission electron microscopy more than 40-years previously.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea.
Corneal endothelial cells, situated on the innermost layer of the cornea, are vital for maintaining its clarity and thickness by regulating fluid. In this study, we investigated the differences in the transcriptome between young and old corneal endothelial cells using next-generation sequencing (NGS). Cultured endothelial cells from both young and elderly donors were subjected to NGS to unravel the transcriptomic landscape.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France.
The cornea, the anterior meniscus-shaped transparent and refractive structure of the eyeball, is the first mechanical barrier of the eye. Its functionality heavily relies on the health of its endothelium, its most posterior layer. The treatment of corneal endothelial cells (CECs) deficiency is allogeneic corneal graft using stored donor corneas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!