Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The formation of Mo/Au surface alloy during Au-assisted chemical vapor deposition (CVD) of MoS is confirmed by a series of control experiments. A metal-organic chemical vapor deposition (MOCVD) system is adapted to conduct two-dimensional MoS growth in a controlled environment. Sequential injection of Mo and S precursors, which does not yield any MoS on SiO /Si, grows atomically thin MoS on Au, indicating the formation of an alloy phase. Transmission electron microscopy of a cross-section of the specimen confirms the confinement of the alloy phase near the surface only. These results show that the reaction intermediate is the surface alloy, and that the role of Au in the Au-assisted CVD is the formation of an atomically thin reservoir of Mo near the surface. This mechanism is clearly distinguished from that of MOCVD, which does not involve the formation of any alloy phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201805452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!