XRCC2 mutation causes premature ovarian insufficiency as well as non-obstructive azoospermia in humans.

Clin Genet

Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan , China.

Published: March 2019

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13475DOI Listing

Publication Analysis

Top Keywords

xrcc2 mutation
4
mutation premature
4
premature ovarian
4
ovarian insufficiency
4
insufficiency well
4
well non-obstructive
4
non-obstructive azoospermia
4
azoospermia humans
4
xrcc2
1
premature
1

Similar Publications

Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has expanded the concept of "FA signaling" to include over 30 proteins involved in DNA Damage Response (DDR), making it the largest cellular defense network against DNA damage.
  • Different human cancers display unique mutational profiles related to DDR/FA signaling, with ATM and BRCA2 being major players across many cancer types, while genes like FANCT predominate in breast and liver cancers.
  • Understanding these mutation patterns is crucial, as they greatly influence patient survival and treatment outcomes, potentially guiding more effective therapeutic strategies for various cancers.
View Article and Find Full Text PDF

Two recombinases, RAD51 and DMC1, catalyze meiotic break repair to ensure crossovers (COs) between homologous chromosomes (interhomolog) rather than between sisters (intersister). FIDGETIN-LIKE-1 (FIGL1) downregulates both recombinases. However, the understanding of how FIGL1 functions in meiotic repair remains limited.

View Article and Find Full Text PDF

Homologous recombination (HR) is an important mechanism for repairing DNA double-strand breaks (DSBs) and preserving genome integrity. Pathogenic mutations in the HR proteins BRCA2 and the RAD51 paralogs predispose individuals to breast, ovarian, pancreatic, and prostate cancer. The RAD51 paralogs: RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 form two complexes RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3).

View Article and Find Full Text PDF

Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA.

Nucleic Acids Res

October 2024

Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.

Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!