Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cge.13475 | DOI Listing |
Int J Mol Sci
November 2024
Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2024
University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States.
New Phytol
December 2024
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
Two recombinases, RAD51 and DMC1, catalyze meiotic break repair to ensure crossovers (COs) between homologous chromosomes (interhomolog) rather than between sisters (intersister). FIDGETIN-LIKE-1 (FIGL1) downregulates both recombinases. However, the understanding of how FIGL1 functions in meiotic repair remains limited.
View Article and Find Full Text PDFHomologous recombination (HR) is an important mechanism for repairing DNA double-strand breaks (DSBs) and preserving genome integrity. Pathogenic mutations in the HR proteins BRCA2 and the RAD51 paralogs predispose individuals to breast, ovarian, pancreatic, and prostate cancer. The RAD51 paralogs: RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 form two complexes RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3).
View Article and Find Full Text PDFNucleic Acids Res
October 2024
Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!