Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endothelial progenitor cells (EPCs) play a crucial role in endothelial repair after arterial injury. Hydrogen sulfide (H2S) is a novel gasotransmitter that regulates vascular homeostasis.
Method: We investigated whether exogenous H2S could facilitate EPCs in repairing arterial injury.
Results: Sodium hydrosulfide (NaHS), a precursor of H2S, promoted re-endothelialization and inhibited neointima formation in a rodent carotid artery injury model. Flow cytometric analysis revealed that NaHS treatment significantly increased the yield of EPCs after vascular injury. Furthermore, NaHS enhanced the capacity of EPCs to the luminal surface of injured arteries in wild-type mice, which had received a bone marrow transplantation from tie2-GFP donor mice. However, this enhancing effect was greatly attenuated in endothelial nitric oxide synthase knockout mice (eNOS). In-vitro incubation of human EPCs with NaHS not only increased the yield of EPCs, but also enhanced their adhesion and colony formation capacities. Treatment with an eNOS inhibitor (L-NAME) blocked the effects of NaHS on EPCs functions.
Conclusion: H2S enhances eNOS-dependent mobilization of bone marrow-derived EPCs and facilitates re-endothelialization following vascular injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HJH.0000000000001983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!