The central argument in this article is that the probability of very large natural pandemics is more uncertain than either previous analyses or the historical record suggest. In public health and health security analyses, global catastrophic biological risks (GCBRs) have the potential to cause "sudden, extraordinary, widespread disaster," with "tens to hundreds of millions of fatalities." Recent analyses focusing on extreme events presume that the most extreme natural events are less likely than artificial sources of GCBRs and should receive proportionately less attention. These earlier analyses relied on an informal Bayesian analysis of naturally occurring GCBRs in the historical record and conclude that the near absence of such events demonstrates that they are rare. This ignores key uncertainties about both selection biases inherent in historical data and underlying causes of the nonstationary risk. The uncertainty is addressed here by first reconsidering the assumptions in earlier Bayesian analyses, then outlining a more complete analysis accounting for several previously omitted factors. Finally, relationships are suggested between available evidence and the uncertain question at hand, allowing more rigorous future estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306648 | PMC |
http://dx.doi.org/10.1089/hs.2018.0039 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, Montana State University, Bozeman, MT 59717.
Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Each of the Coronavirus disease 2019 (COVID-19) vaccines has its characteristics that can affect their effectiveness in preventing hospitalization and patient mortality. The present study aimed to determine the effectiveness of COVID-19 vaccines, including whole-virus, protein-based, and vector-based on COVID-19 infection, hospitalization, and mortality.
Methods: The current cohort study was conducted using the data of all people who received at least two doses of each type of COVID-19 vaccine from March 2020 to August 2022 in Khorasan Rzavi province.
J Autism Dev Disord
January 2025
Department of Pediatrics, Madigan Army Medical Center, Tacoma, WA, USA.
There have been disparities reported in prevalence of autism by gender, race, and socioeconomic status with older ages of diagnosis in non-White and in female children. Possible disparities in the ages of autism diagnosis are not well-established within the Military Health System (MHS) pediatric population, where we hypothesized less disparities given universal Tricare coverage for active-duty military families and theoretically equal access to the military treatment facility (MTF). We conducted retrospective cross-sectional analysis using deidentified database repository records from the MHS.
View Article and Find Full Text PDFSci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!