AI Article Synopsis

  • Understanding G-protein-coupled receptors (GPCRs), especially rhodopsin, is essential for creating new drugs.
  • Small-angle neutron scattering (SANS) helps study rhodopsin's structural changes when exposed to light, using a specific detergent called CHAPS to optimize results.
  • The research reveals that upon light exposure, rhodopsin absorbs water, altering its shape and enabling it to interact with proteins involved in vision signaling.

Article Abstract

Knowledge of the activation principles for G-protein-coupled receptors (GPCRs) is critical to development of new pharmaceuticals. Rhodopsin is the archetype for the largest GPCR family, yet the changes in protein dynamics that trigger signaling are not fully understood. Here we show that rhodopsin can be investigated by small-angle neutron scattering (SANS) in fully protiated detergent micelles under contrast matching to resolve light-induced changes in the protein structure. In SANS studies of membrane proteins, the zwitterionic detergent [(cholamidopropyl)dimethylammonio]-propanesulfonate (CHAPS) is advantageous because of the low contrast difference between the hydrophobic core and hydrophilic head groups as compared with alkyl glycoside detergents. Combining SANS results with quasielastic neutron scattering reveals how changes in volumetric protein shape are coupled (slaved) to the aqueous solvent. Upon light exposure, rhodopsin is swollen by the penetration of water into the protein core, allowing interactions with effector proteins in the visual signaling mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b03048DOI Listing

Publication Analysis

Top Keywords

neutron scattering
12
small-angle neutron
8
scattering reveals
8
changes protein
8
reveals energy
4
energy landscape
4
rhodopsin
4
landscape rhodopsin
4
rhodopsin photoactivation
4
photoactivation knowledge
4

Similar Publications

Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS.

Nano Lett

December 2024

Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Interparticle ligand exchange can occur during the formation of nanoparticle superlattices (NPSLs), affecting the symmetry of the NPSLs. Here, we report time-resolved small-angle neutron scattering (TR-SANS) measurements of the interparticle exchange kinetics of thiolate ligands among gold nanoparticles (AuNPs) at different temperatures. To track the ligand exchange among AuNPs, two groups of AuNPs were functionalized with hydrogenated and deuterated dodecanethiol, respectively, and then mixed in a solvent mixture of toluene and deuterated toluene for shell contrast.

View Article and Find Full Text PDF

We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Self-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH.

View Article and Find Full Text PDF

Revealing an origin of temperature-dependent structural change in intrinsically disordered protein.

Biophys J

December 2024

Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494 Japan. Electronic address:

Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and dynamics of the intrinsically disordered region of Hef, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!