A syn-arylative nickelation followed by nucleophilic syn-selective cyclization of o-propargyloxy benzaldehydes is achieved toward the synthesis of chromanol skeletons with alkenyl substitution at C3. The capture of the intermediate vinyl nickel in its cis geometry is done also with a Michael acceptor to synthesize 4-alkylated derivatives. This protocol is equally applicable to o-propargylamino benzaldehydes to access 3,4-disubstituted tetrahydro-hydroquinolines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b02618DOI Listing

Publication Analysis

Top Keywords

nickel catalyzed
4
catalyzed syn-selective
4
syn-selective aryl
4
aryl nickelation
4
nickelation cyclization
4
cyclization aldehyde/enone-tethered
4
aldehyde/enone-tethered terminal
4
terminal alkynes
4
alkynes arylboronic
4
arylboronic acids
4

Similar Publications

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

An isoreticular metal-organic framework (MOF) series was constructed from nickel or cobalt nodes, phosphonate monoester, and bipyridine linkers. The cobalt-containing MOFs were found to catalyze the dehydrogenative C-H borylation of alkenes under mild conditions. This process selectively generates vinyl boronate without the formation of alkyl boronate byproducts and is insensitive to air, enabling large-scale preparation of the target products with isolated yields of over 80%.

View Article and Find Full Text PDF

Enantioselective Synthesis of Chiral β-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation.

J Am Chem Soc

December 2024

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Compared with chiral β-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β-amino phosphorus derivatives from -β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee).

View Article and Find Full Text PDF

The hydrolysis of lightweight metal-based materials is a promising technology for supplying hydrogen to portable fuel cells. Various additives for the catalytic modification of Mg hydrolysis have been investigated. Efficient catalysts and small magnesium particle sizes are key to enhancing the rate of hydrogen production.

View Article and Find Full Text PDF

Collaborative Reduction-Induced Nickel-Catalytic Selective C-S Coupling of Aryl Di/Trithiosulfonates with Aryl Halides.

Org Lett

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.

Metal-catalytic conversion of polysulfide reagents is a major challenge in organic synthesis due to its challenging activation modes of multiple S-S bonds. The utilization of aryl di- and trithiosulfonates in nickel-catalyzed reductive coupling with aryl halides has been unexplored. Herein, we unprecedentedly describe PPh and Zn-collaborative reduction-induced nickel-catalytic selective C-S coupling of aryl di/trithiosulfonates with aryl halides to access sulfides over common disulfides or trisulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!