A copper-catalyzed propargylic [3+2] cycloaddition of simple alkynes with β-ketoesters through the propargylic C(sp3)-H functionalization has been realized. Under catalysis by CuI in combination with 1,10-phenanthroline hydrate as the ligand and Ag2CO3 as a bifunctional reagent (oxidant and base), the reaction proceeds smoothly with a broad substrate scope, thus providing a variety of highly functionalized furans in moderate to high yields. This represents the first successful example of the catalytic propargylic cycloaddition of simple alkynes with bisnucleophiles based on the propargylic C(sp3)-H functionalization strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc08013e | DOI Listing |
Chem Commun (Camb)
January 2025
Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
Herein we report a simple BF-catalyzed cycloaddition of dihydropyridines with bicyclobutanes for the expedient synthesis of novel three-dimensional azacycle-fused bicyclo[2.1.1]hexane scaffolds.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
A synthetic strategy of a three-component spiro-pyrrolidine compound based on benzofuran via an [3+2] azomethine ylide cycloaddition reaction is reported herein. Under mild optimal conditions, this reaction can quickly produce potentially bioactive compounds with a wide range of substrates, high yield, and simple operation. The desired products were obtained with a yield of 74-99% and a diastereomeric ratio (dr) of >20:1.
View Article and Find Full Text PDFAnal Chem
December 2024
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
A simple, rapid, and visual approach is developed to perform diagnosis of urinary tract infection (UTI) and antimicrobial susceptibility testing (AST) by employing smart bifunctional DNA (bfDNA) sensors, exonuclease III, concatermers of CuO nanoparticles (CuONPs), and gold NPs (AuNPs) aggregation [AuNPs agglutination (AA)], namely, the bfDEC-AA method. The bfDNA sensors serve as probes for identifying 16S rRNA genes of bacterium or 18S rRNA of fungus and as mediators connecting the concatermers of CuONPs. The AA as a signal source is triggered by Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.
Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of -heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!