By varying the concentration of a solvent additive, we demonstrate the modulation of intermolecular (donor/acceptor (D/A) interface) and intramolecular (bulk) disorder in blends of the low-band gap polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4 H-cyclopental[2,1- b;3,4- b']-dithiophene)- alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) blended with [6,6]-phenyl-C-butyric acid methyl ester (PCBM). Using the solvent additive concentration of 1,8-diiodooctane (DIO) in the host-processing solvent, the disorder in the bulk and at the interface is studied in terms of Urbach energy, electroluminescence (EL) broadening, and EL quantum efficiency (EL). The Urbach energy varies from 80 to 39 meV for bulk and 39 to 51 meV for D/A interface. An interesting feature is that changes in the Urbach energy of the D/A interface are opposite to those of the Urbach energy of bulk; i.e., the disorder at the D/A interface increases as the disorder in the bulk decreases with increase in DIO concentration. Our study evidently suggested a negative correlation between intermolecular and intramolecular property in a bulk-heterojunction solar cell. Furthermore, scanning photocurrent microscopy measurements show that the effective hole transport length is double in magnitude for cells processed from 3 vol % DIO in comparison to that in cells processed from 0 vol %. This increase in effective hole transport length is explained by an increase in the delocalization of the electronic states involved in charge transport, as confirmed by dark J- V knee voltage, J and E measurements. Henceforth, we provide a functional relationship between the additive-induced bulk-heterojunction morphology and the optoelectronic properties of PCPDTBT-based solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b14628 | DOI Listing |
Eur J Radiol
January 2025
Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany.
Purpose: Directional deep brain stimulation (dDBS) relies on electrodes steering the stimulation field in a specific direction. Post implantation, however, the intended and real orientation of the lead frequently deviates e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Nano Lett
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Sci Rep
December 2024
Department of Physics, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, 32511, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!