Many factors have been shown to affect mating behavior. For instance, genes of the major histocompatibility complex (MHC) are known to influence mate choice in a wide variety of vertebrate species. The genetic management of captive populations can be confounded if intrinsic mate choice reduces or eliminates reproductive success between carefully chosen breeding pairs. For example, the San Diego Zoo koala colony only has a 45% copulation rate for matched individuals. Herein, we investigated determinants of koala mating success using breeding records (1984-2010) and genotypes for 52 individuals at four MHC markers. We quantified MHC diversity according to functional amino acids, heterozygosity, and the probability of producing a heterozygous offspring. We then used categorical analysis and logistic regression to investigate both copulation and parturition success. In addition, we also examined age, day length, and average pairwise kinship. Our post-hoc power analysis indicates that at a power level of 1-β = 0.8, we should have been able to detect strong MHC preferences. However, we did not find a significant MHC effect on either copulation or parturition success with one exception: pairs with lower or no production of a joey had significantly lower MHC functional amino acid diversity in the categorical analysis. In contrast, day length and dam age (or age difference of the pair) consistently had an effect on mating success. These findings may be leveraged to improve the success of attempted pairs, conserve resources, and facilitate genetic management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/zoo.21457 | DOI Listing |
Animals (Basel)
December 2024
Instituto de Investigaciones Sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58330, Michoacán, Mexico.
Ecol Evol
January 2025
Department of Biology, Barnard College Columbia University New York New York USA.
Males in many species show courtship and mating preferences for certain females over others when given the choice. One of the most common targets of male mate choice in insects is female body size, with males preferring to court and mate with larger, higher-fecundity females and investing more resources in matings with those females. Although this preference is well-documented at the species level, less is known about how this preference varies within species and whether there is standing genetic variation for male mate choice within populations.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Boehringer-Ingelheim Animal Health, Level 2, 3 Te Kehu Way, Mount Wellington, Auckland, New Zealand.
The aims of this study were to assess the effect of meloxicam at the time of lameness treatment for hoof-horn (HH) lesions in dairy cattle on 1) time to lameness soundness post trimming and block application and 2) reproductive success Five seasonal-calving pasture-based dairy farms located in the Waikato region of New Zealand were enrolled into a randomized clinical interventional trial. Farmers were tasked with identifying lame animals over a period of approximately -4 to 6 weeks relative to the herd start of mating (HSM), with lameness subsequently confirmed with lameness score (LS) by trained technicians (0-3 scale, where ≥2 are considered lame). Animals with a LS ≥2 were examined by a veterinarian who then enrolled animals if they presented lame with HH (white-line or sole) lesions.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
In animals where males engage in multiple matings, sperm depletion can substantially reduce the reproductive success of both sexes. However, little is known about how successive matings affect sperm depletion, fertilization rates and mating behaviour. Here, we investigated this phenomenon under laboratory conditions.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.
Variation in reproductive success is a fundamental prerequisite for sexual selection to act upon a trait. Assessing such variation is crucial in understanding a species' mating system and offers insights into population growth. Parentage analyses in cetaceans are rare, and the underlying forces of sexual selection acting on their mating behaviours remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!