Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named sensu stricto (s.s.) and We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with s.s. clones having higher heat tolerance than the novel species This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283924 | PMC |
http://dx.doi.org/10.1098/rsbl.2018.0498 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!